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Mobile wireless ad hoc networks are instantaneous, autonomous 

telecommunication networks that provide service to users wherever and whenever the 

service is needed. The communication depends on wireless links that are formed between 

the users. A link is formed between two users if they are within each other’s wireless 

communication range. The mobility in these networks can cause links to disconnect, 

disrupting communications. A new strategy is proposed which controls the movements of 

some mobile agents to maintain network connectivity. The main objective of these

mobile agents is to maximize network data flow, which is formulated as an all-pair 

maximum flow problem. This is accomplished by optimizing the movements of the 

agents to their next locations as the user nodes travel freely in the field. The 

representation of ad hoc network performance in terms of an all-pair maximum flow 
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problem is novel as is dynamically optimizing the agent nodes using heuristic algorithms 

integrated with network flow algorithms. Two evolutionary inspired, population based 

heuristic algorithms; a genetic algorithm and a particle swarm are developed along with 

an approximate linear programming model as optimizer tools. The results show the

advantage of employing heuristic algorithms due to the complexity of the problem. While 

the approximate linear model could only solve small static and medium dynamic 

problems with poor results, the heuristics performed successfully for problems two to 

four times larger. These heuristic approaches will enable robust and physically self 

organizing networks with superior connectivity properties. The approach proposed in this 

research can be applied to static scenarios and dynamic situations. This is important 

because there are practical static applications of ad hoc networks, mainly in sensor 

networks. The novel models and algorithms developed should enable new research and 

and commercial opportunities in ad hoc wireless networking.
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CHAPTER 1

1. INTRODUCTION

With the increasing availability of computers with high processing speeds and large 

storage capabilities, individuals as well as businesses heavily depend on them. Moreover, 

the high data rate networks that connect computers and networks of computers to each 

other have enabled many services, but have increased the dependency of users to these 

interconnected networks. Computing is moving towards a time when a non-networked 

computer will be nearly useless.

1.1 Wireless and Wireline Telecommunication Networks

With the development of network technologies, wireline networks (networks built 

by cable connections) have become very fast, and reliable. Many researchers have studied 

the problems that arise in the design of wireline networks. Numerous methods and 

algorithms have been developed and tested which have more or less the same objectives; 

maximize reliability, speed, connectivity, and minimize cost [3, 4, 32, 33, 57, 82]. These 

objectives are sometimes seen in the form of constraints, where for example a minimum 

reliability value should be satisfied while minimizing the total cost.
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Wireline networks have provided users with very fast and reliable networks over 

time and a large portion of the world economy now relies completely on these

telecommunication networks. It is important to note that almost any form of information 

can be represented digitally today. Video, voice, and paper documents are common 

examples of data that are digitized every day. Wireline networks are fast, secure and 

reliable but they do have limitations. A significant limitation is that the users have to be 

near a data terminal so that they can connect their computer devices. However, it is

crucial in today’s world for individuals to travel and have access to a computer that is 

connected to a network. This is important for businesses or governments to be responsive 

to dynamically changing conditions and environments. Another limitation of wireline 

networks is that in case of a link failure, the repair job may involve the surrounding 

infrastructure.

With the recent developments in technology, very portable computer devices that 

have considerable processing speeds and data storage capabilities have become available. 

Such devices inherently have the ability to travel, and also manage individual or business 

tasks. Of course, portable devices need wireless data connectivity.

Wireless data communication networks can be divided into two main categories; 

wireless local area networks (WLAN) and wireless wide area networks (WWAN). 

Wireless local area networks have been highly developed and commercialized. In 

WLANs, users connect to local wireless access points and thus access local or wide area 

networks. The local access points have limited ranges, and the users need to be within the 

range of an access point in order to access the network. WLANs can provide users with 
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very fast data transmission speeds and reliability equivalent to wireline networks. 

However, range and mobility limitations exist. Users can only move within a few 

hundred feet, losing connectivity when they go out of the access points’ range. It is 

possible to maintain connectivity by “handoff” to other access points covering the new 

location, provided that they remain in the same subnet.

The second type of wireless data telecommunication networks (WWAN) is

centered on cellular networks, or the global system of mobile communications (GSM). 

GSM has made its way into the lives of countless people. There is currently an estimated 

1.5 billion GSM subscribers worldwide [47]. This is a huge increase from the 170 million 

wireless subscribers in year 2000 [24]. Almost all mobile telephones that are in use today 

are using cellular network technology. Similar to WLAN, cellular networking technology 

requires base stations, located so a certain area is covered. Base stations are connected to 

a central switching office which also keeps a database of users that are currently using the 

network so that the necessary routings can be done. These systems are technologically 

advanced and provide users excellent service for voice communications. However, 

cellular systems have limited data transfer. While the data rates in cellular networks are 

enough for good quality voice communications, they are still very slow for simple 

networking tasks involving multimedia or large file transfers. 

The newer generation cellular network technologies, i.e. 3G networks, offer higher 

data rates than previous cellular networks, but costly investments both in network 

infrastructure and subscriber equipment are necessary.



www.manaraa.com

4

1.2 Ad Hoc Networks

A different type of wireless networking technology that was developed a few 

decades ago has become popular again and is attracting research interest [24, 81]. Called

ad hoc networks, this type of wireless network does not require any fixed infrastructure

and user devices communicate among themselves via the arbitrary and temporary “ad 

hoc” network topologies that they form [35, 41, 81]. Mobile ad hoc networks will be 

referred to as MANET in the literature throughout the rest of this paper, following the 

common practice in the literature. While the infrastructure topology is fixed and stable in 

a traditional WLAN, it is potentially very dynamic in a MANET [53]. Ad hoc networking 

had been used in combat fields and by emergency response teams but the wider 

availability of wireless capable computers and improved routing protocols have made it

an emergency telecommunication network alternative [7, 24, 35, 41]. Ad hoc networks 

are considered essential in 4G wireless network architectures. 4G systems aim to provide 

ultra-high transmission speed of up to 100 Mbps, which is 50 times faster than those in 

3G networks [24]. More detailed information on the MANET technology is given in the 

background section.
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CHAPTER 2

2. BACKGROUND

In this chapter, some background information about wireless mobile ad hoc 

networks, their possible application areas and research challenges are described. The 

literature review is given for routing, different approaches for modeling and measuring 

mobility and connectivity, and finally for the prediction of mobility in mobile ad hoc 

networks.

2.1 Wireless Mobile Ad hoc Networks (MANET)

Ad hoc networks are networks formed without a central administration. They 

consist of nodes which use wireless interfaces to send data packets. The nodes in ad hoc

networks can serve as both routers and hosts and they can forward packets on behalf of 

other nodes in the networks [41].

The roots of ad hoc networking can be traced back to the late 1960s and early 

1970s but the technology had not been developed for the consumer market [24, 41]. The 

reason that ad hoc networks are now drawing attention is because of the availability and 

popularity of high performance portable handheld computers with wireless 
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communication capabilities. An added motivation is that MANET has almost no initial 

investment cost.

The importance of being able to form instant, autonomous telecommunication 

networks is highlighted by the natural disasters that devastated different parts of the 

world in 2004 and 2005. Damage assessment and emergency response teams needed 

reliable telecommunication capability where almost all fixed infrastructure was damaged 

and non-operational for weeks or longer. The following quote is taken from [29], which 

describes the situation in New Orleans after the hurricane Katrina in August 2005:

"The devastation was so complete, so comprehensive ... that we couldn't figure 

out how bad it was," said Adm. Timothy Keating, chief of the U.S. military's 

Northern Command, which oversaw the Pentagon's Katrina effort. "On Tim 

Keating's list of things we need to work and to analyze very carefully, 

communications is at the top of that list."

This aspect of ad hoc networking is enough by itself to justify the need for research 

to develop its technology and reliability, i.e. its usability.

A main advantage of ad hoc networks is that no infrastructure investment is

necessary. This is a huge economic advantage from the point of view of investors. It also 

opens up possibilities in underdeveloped countries where infrastructure investment is 

lacking. Ad hoc networks are dynamic and flexible in terms of the coverage area. 

Network connectivity is a function of user movements and their relative locations. This is 
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an advantageous property from the users’ standpoint but the network dynamics need to be 

properly managed.

A reliable network is usually the number one priority for users. A very crude

definition of a reliable network can be given as; the network is always expected to be 

available when access is required, given that the user equipment has no physical defects.

2.2 MANET Performance

There are many factors that affect the performance and reliability of a mobile ad 

hoc network. Links between the mobile devices sometime exist, and sometime not, 

depending on their locations relative to each other, their transmission power and the 

surrounding environment. New mobile devices can enter the system, or existing devices

can disappear for various reasons including loss of battery power or loss of signal 

strength due to distance or other environmental causes. Under totally random user 

behavior, it is very likely that one or more users will lose their connectivity with the 

network or with the parts of the network due to their positions relative to other users. If a

user is outside the range of its nearest neighbor in the network in terms of signal strength, 

then its access to the rest of the network will be unavailable.

Communication between the nodes of a MANET can be in a multi hop fashion, 

meaning data can be sent to a destination node not directly connected to the source node

using an available route through other nodes. Each user can communicate directly to 

other users within its range. To communicate with nodes beyond its range, it needs to use 

intermediate nodes to relay the data packets, hop by hop [24]. Figure 2-1 shows a 
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MANET with six nodes, each with a transmission range of 1.7 units at two different 

times.
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Figure 2-1 A MANET with six nodes, each with wireless transmission range = 1.7,

(a) Connected (b) Disconnected

Gupta and Kumar have shown that if n identical stationary ad hoc network nodes, 

each with a data transmission rate of W bits/sec and a fixed range, are randomly located 

to form a wireless network using a non-interference protocol, the data throughput realized 

by any node for a randomly chosen destination has an upper bound of ( )nnW log [48]. 

Even if all parameters such as transmission ranges, traffic patterns and node placements 

are optimally arranged, the bound on the throughput becomes ( )nW . The apparent trade-

off between the number of nodes and individual throughput rates is due to the multi-hop 

nature of wireless ad-hoc networks. Each node generates a certain traffic burden for other 

nodes, thus every node uses some of its capacity to relay other nodes’ data. In order to 
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decrease the number of hops necessary to reach a destination node from a source node, 

one might think of increasing the transmission range, but this causes increased 

interference. The mobility of an ad hoc network introduces additional variations to its 

capacity. Grossglauser and Tse suggest that mobility can actually improve the capacity of 

an ad hoc network when compared with a fixed network [46]. They propose a

communication model by relaying the data to its destination using a number of relay 

nodes, delivering only when the relay node is closer to the destination, within a two-hop 

path. This eliminates excessive multi hop requirements. The drawback of this proposal is 

that the applications need to be delay tolerant. The communication waits until the mobile 

relay nodes are close to the destination nodes. This causes large delays, increasing with 

the size of the system, making it unsuitable for real time applications such as voice 

communications or remote control.

Whether fixed or mobile, the capacity of an ad hoc network is mainly bounded by

individual transmission capacities. In this research, a method to maximize the individual 

data transmission rates between all user pairs and the total data transmission rate of a 

mobile ad hoc network is proposed. The actual capacity of the network will depend on 

the routing, scheduling and relaying of the communicated data, which are not addressed 

in this dissertation.

There have been some studies that investigate reliability in ad hoc networks by 

addressing data packet routing algorithms. This is an important problem for ad hoc 

network reliability. Different routing algorithms have been developed, each trying to 

optimize data packet routes by assessing network connectivity [1, 5, 11, 35, 54, 55, 60, 
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72, 73, 89]. Detailed aspects of the different routing protocols will be given in the 

following sections. However, regardless of what type of routing protocol is used, the first 

and most important requirement for communication between any two nodes is having at 

least one path linking them, which is the basic definition of network connectivity. 

Network connectivity is at a high level in the reliability hierarchy. If a single user or a 

part of a network has no connectivity, then data packet routing reliability becomes of 

secondary importance. The availability of paths between the nodes depends on network 

topology. Since mobile ad hoc networks are formed by mobile devices, they have 

continuously changing, dynamic topologies which is a distinguishing feature as well a 

challenge [53].

Due to the dynamic connectivity nature of ad hoc networks, special care needs to 

be taken in studying the connectivity problem as well as the routing reliability problem. 

This dissertation aims to develop a method that will optimize the network topology 

dynamically such that the network connectivity is maximized. Network connectivity is a 

broad term used to represent different objectives by different researchers. The term 

network connectivity is purposely used here, because a special connectivity measure will 

be developed taking into account the characteristic properties of ad hoc networking.

2.3 Applications of MANET

The most commonly envisioned application of MANET is military 

communications including combat, emergency response, search and rescue, maneuvers, 

etc. [7, 24, 35, 41, 81]. Besides the commonly envisioned uses of MANET, it can be used 
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where there is no telecommunications network infrastructure available. This could be 

because it has never existed, or there might be an existing infrastructure which is 

inoperable due to disaster damage. Rescue operations, rural construction sites, or rural 

land survey teams are examples. Ad hoc networks can also be used when the existing 

infrastructure is not capable of handling a short-term demand increase. An event area 

where tens or hundreds of thousands of people gather is an example [81]. Such a 

concentration in a town, in a concert hall, or in a stadium creates a short-term demand 

that is beyond the maximum available capacity of the local network infrastructure. 

Another important aspect of MANET is its ability to form an independent network within 

its users only. This could be useful if the communications need to be secured. For 

example, for military operations, without using any existing infrastructure in either 

friendly or hostile territory, secure communications can be established between military 

vehicles, mobile or stationary teams.

2.4 Routing in Ad Hoc Networks

The definition of routing in a telecommunication network is as follows: routing is

the mechanism of directing data packet flow from the source to the destination. There are 

many different routing protocols, and different algorithms under those protocols, for 

fixed topology wireline or wireless networks with different constraints and objectives 

such as maximum path capacities or minimized costs. Similarly, there are different 

routing protocols and algorithms for ad hoc networks, with different objectives. In an ad 

hoc network since there is no fixed topology, managing routing is a very important task 
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to maintain the quality of service (QoS). Routing in ad hoc networks is much harder than 

routing in fixed topology networks. There are three main classifications of MANET 

routing protocols and each approach has its own advantages and disadvantages, according

to the realized mobile network scenario [53]. These three protocols can be summarized as 

follows:

2.4.1 Proactive Routing

Proactive routing algorithms or table-driven algorithms work on the basis of a well 

maintained, i.e. frequently updated, routing table kept by every node in the network. The 

routing tables are always available and whenever a packet needs to be sent, the source 

node will send the packets via the best route found by a certain algorithm. The 

disadvantage of this protocol is that due to the dynamic nature of the network topology, 

the maintenance of the routing tables consumes a lot of the network bandwidth. Common 

examples of this routing protocol are destination-sequenced distance-vector routing 

(DSDV) [71], clusterhead gateway switch routing (CGSR) [23], and optimized link state 

routing (OLSR) [54].

2.4.2 Source-initiated On-demand Routing

On-demand routing is a reactive protocol, and paths are constructed only when 

there is a need to send a packet. Rather than continuously updating the routing tables, the 

source node initiates a path discovery algorithm before sending the packet. When the path 

discovery reaches the destination node, the information is sent back to the source node 
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and the data packet is then sent via the constructed path. Although the on-demand routing 

protocol does not use up valuable bandwidth like the proactive routing, a delay is 

incurred while constructing a route from the source to the destination nodes. Some 

examples of this type of algorithm are ad hoc on-demand distance vector (AODV) [72]

and dynamic source routing (DSR) [55].

2.4.3 Hybrid Routing Protocols

The first two types of routing protocols have their weaknesses as described in their 

summaries. Hybrid protocols have emerged to form a MANET routing protocol that 

combine the advantages and minimize the weaknesses of the proactive and reactive 

protocols. Zone routing protocol (ZRP) is based on a hybrid approach. A node uses a 

proactive type routing for its neighboring nodes within a certain number of hops. Routing 

for more distant destinations is done using a reactive path discovery [70].

2.5 MANET Connectivity

Bettstetter [9] investigates node degree and connectivity characteristics of MANET, 

and terms these the two fundamental characteristics. The node degree and connectivity 

concepts for MANET are explained in more detail in Section 2.5.3. To give a basic 

definition, node degree is the number of links that a node has in the network, and 

connectivity is a measure of the total possible disjoint paths between node pairs. 

Bettstetter defines a simulation model which consists of three stages. First, a total of n

MANET nodes are placed on a two-dimensional simulation area A using a uniform
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random distribution. Second, wireless transmission is modeled for each node based on 

omnidirectional, or circular, transmission with transmission range, R, and a certain path 

loss or signal attenuation model. Every user is assumed to have the same transmission 

range. Finally, a third model is defined for the mobility of the nodes, such as random 

waypoint or random direction.

Bettstetter represents the MANET as a graph G = (V,E) where vertices set V is the 

nodes, and the edges set E is the links formed between the nodes within each other’s 

range. More detailed information on how a MANET is modeled as a graph is given in 

Section 2.5.3. He develops analytical expressions for the minimum required R value such 

that the probability of having no isolated nodes is a high probability P. In that study, the 

probability that a node is isolated is given as in equation ( 2-1 ).

P(a node has no neighbors) = 

2

e

−

( 2-1 )

where ρ = n / A, and similarly the probability that the network is connected is:

P(every MANET node is connected) = 

2

1 e

−

−

( 2-2 )

Bettstetter provides the analyses of the transmission range R versus the probability 

that the MANET is connected. From his results, it is clearly seen that there is a certain 

threshold range value immediately below which the P(every MANET node is connected) 

is almost zero, whereas immediately above the critical range the probability is almost 

one. Known as the “phase transition,” this behavior is fairly common in many graph 

measures [9, 38].
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Similarly, Xue and Kumar [91] studied the number of nodes that each node needs 

to have in its neighborhood to keep the network connected. They showed that instead of 

some constant magic number, connectivity is almost certainly established if every node is 

connected to its nearest 5.1774·log(n) neighbors, where n is the number of MANET 

nodes. Both of these studies assume uniformly randomly distributed nodes in a certain 

area and approach the connectivity in a probabilistic manner. 

Cook and Marquez [28] proposed a two-terminal reliability calculation approach 

for a MANET with a random waypoint mobility model. The analytical expression for the 

expected number of neighbors is used to calculate the probability of link existence and a 

Monte Carlo based simulation calculates a two terminal reliability measure. Their results 

indicate that the two terminal reliability of a MANET increases with increasing node 

density, however it is bounded by the square of the node reliabilities.

Bettstetter also analyzes the impact of mobility on the measures he derived for

MANET. However, his basic assumption for mobile node scenarios is that n >> 1, nodes 

are always distributed uniformly in the area and A >> R
2

⋅π at each time step. Further, all 

node movements are independent and not confined to a certain sub portion of the 

simulation area. The mobility model that is used in that study [9] is the random waypoint 

model in which a node randomly chooses a destination point and moves towards it with a 

certain velocity, pauses for a certain time when it reaches the destination and then 

chooses the next destination point. This behavior is sufficient to model a completely 

random behavior but certainly not suitable for the case of mobile agents whose primary 

aim is to analyze the network continuously and move to their next best location. 
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2.5.1 Connectivity versus Routing

Although routing is a very important task in ad hoc networking, network 

connectivity (which determines the ability of the user nodes being able to form single or 

multi hop paths among themselves) is a more fundamental requirement [53]. If there are 

no possible links between the source and the destination nodes, communications will be 

disrupted no matter which routing protocol is used. This dissertation is primarily aimed at 

developing a method that maximizes the connectivity of the network such that 

communication disruptions due to link unavailability are minimized. However, the 

developed method will also be useful for routing protocols to maintain or generate 

routing tables as needed.

2.5.2 Connectivity and Performance Measures

A mobile ad hoc network at any instant can modeled as an undirected graph with 

nodes being the vertices and links being the edges, as given in [9]. If any two nodes are 

within each other’s range, a link is formed between these two nodes in the ad hoc 

network. The principles of graph theory applied to telecommunication networks are also 

applicable to MANET. Since a MANET is a dynamic network with changing node 

locations, a discrete time model is used to represent the network state at any time t. Let 

UN be the set of the user nodes and AN be the set of mobile agents, and UNt and ANt be 

the sets of active user nodes and mobile agents at time t, respectively. Let graph Gt = 

G(Nt,Et) be an undirected graph with nt nodes (vertices) and mt edges (links), at time t. At 
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any time t, the set Nt = UNt ∪ ANt = {1,2,…,nt} denotes the set of active nodes on the 

network, and set Et = {1,2,…,mt} denotes the set of established links between node pairs.

2.5.3 Basic Graph Theory

As discussed above, there are some graph measures that are useful indicators of the 

state and performance of a MANET [9]. They will be briefly summarized in the 

following sections.

2.5.3.1 Node Degree

The node degree of a node i, denoted by d(i), is the number of neighboring nodes 

with a direct link to i. Another definition for the node degree of node i is the number of 

links it has. The minimum node degree of a graph G is defined as shown in equation

( 2-3).

( ) ( ){ }idGd

Gi∈∀

= min
min

( 2-3 )

The average, or mean, node degree of a graph G is:

( ) ( )∑
=
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n
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n

Gd

1

1

( 2-4 )

which for undirected graphs is equal to:

n

m

d
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2

=

( 2-5 )
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Thus, the minimum, and the average node degree of graph Gt at time t is:

( ) ( ){ }idGd
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( 2-6 )

( ) ( )∑
=

=

t
n

it

tmean
id

n

Gd

1

1

( 2-7 )

or:

t

t

mean

n

m

d

2

=

( 2-8 )

2.5.3.2 Graph Connectivity

Connectivity is defined either for a pair of nodes, or for the entire graph, or for the 

network. A graph is said to be connected if every node can be reached from every other 

node by traveling through the links between nodes, and it is fully connected if all node 

pairs have links between them. In a typical WLAN or WWAN it is sufficient for a mobile 

node to have a link to at least one access point or to a base station. In a MANET 

however, connectivity is a function of the number and locations of the nodes and the 

wireless transmission range [9].

A common way to represent connectivity is the k-connected synonym. If a graph is 

k-connected, then every node pair has at least k disjoint paths between them. For a graph 

to be connected all nodes should be at least 1-connected, i.e. the links of the graph should 

form at least a spanning tree.
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A disconnected graph or an isolated node can result in degraded network 

performance. The main aim of the method proposed in this dissertation is to maintain at 

least a spanning tree at all times in the MANET. All links in the MANET are assumed 

bidirectional, i.e. the data can flow in any direction. Figure 2-2 represents three different 

graphs with different node degrees and connectivity properties.

(a) (b) (c)

Figure 2-2 (a) A connected graph, dmin = 1, dmean = 8/5. (b) A 2-connected graph, dmin = 2, 

dmean = 12/5. (c) A disconnected graph, dmin = 1, dmean = 8/5.

2.6 MANET Mobility

The mobility of a MANET has been addressed by researchers in many different 

ways. For example, in Shukla’s [80] and Camp et al.’s [18] studies, the average velocities 

of MANET nodes are taken as the mobility measure. In Ishibashi and Boutaba’s work

[53] the effect of maximum speed is strongly emphasized. Kwak et al. [58] propose a 

different measure called remoteness suggesting that the average or the maximum 

velocities are insufficient to reflect the movements of the nodes relative to each other. 

The remoteness measure that is proposed is a function of the distance between any two 
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nodes, and it assigns a greater importance to ones that are just at each other’s range or 

near the border.

Ishibashi and Boutaba [53] consider the mobility and MANET topology 

relationship using a random waypoint model. Throughout the life of the network, links 

are created and broken as the nodes move in and out of the range of one another. There 

are different time definitions to describe the life of a link. The first is the optimum 

lifetime of the link. This is the time from when the nodes first move within each other’s 

range so the link can be formed, until the link is broken when they move out of range. 

This is the maximum stable and usable period for the link. However, it is not the actual 

time that the link is available for use. In order for the link to be available for use, it has to 

be detected by a node. Similarly, the breakage of the link has to be detected and this 

happens when a neighbor does not respond for a certain timeout period. The time elapsed 

from the first detection to the link breakage detection is termed the perceived link 

lifetime, which usually extends beyond the end of the existence of a usable link. Data 

packets sent during that time are wasted effort. A final definition that is described in [53]

is the time the link is first included in a path by the routing protocol. This process may 

occur at any time during the link’s lifetime therefore the expected time to failure for the 

link, from the arbitrary time of route discovery, is half of the perceived link lifetime. 

Here, the term failure is used for the event that the link is lost due to the nodes moving 

out of range, not due to an equipment failure.

The quality of a link can be explained as its sustainable data transmission rate, 

which depends on the amount of signal attenuation mainly due to the distance between 
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nodes. This is explained in more detail in Section 4.3.1. Although the node density affects 

the transmission quality of the links, the lifetime only depends on the mobility model and 

the transmission range. Ishibashi and Boutaba show that average link lifetimes 

exponentially decrease with increasing maximum velocity. For a transmission range of 

250 m, at a maximum speed of 5 m/s (18 km/h) the links last about 165 seconds on 

average, and only 40 seconds when the maximum speed is 108 km/h. These are average 

link lifetimes. They report that link lifetime distributions have long but light tails and a 

significant weight around near-zero lifetimes. This means that a significant portion of the 

links formed in a MANET with randomly moving nodes fail in a very short period of 

time. 

Similarly, Chu and Nikolaidis analyze mobility versus connectivity of a MANET

[25]. Their analyses reveal that the higher the velocities are, the better the connectivity. 

This might seem contradicting at first sight, due to the fact that the average link lifetimes 

are expected to be shorter as stated by Ishibashi and Boutaba [53], but the observed 

behavior is explained in terms of connectivity. The explanation is that at low speeds, 

nodes in weaker covered regions tend to stay longer and thus decrease the overall 

connectivity of the network over time. However, with increasing speeds, the link 

lifetimes could become shorter but new links are formed as the older ones dissipate, and 

the node distribution tends to be more uniform, both contributing to overall better 

connectivity. The phase transition phenomena is also seen in Chu and Nikolaidis’s paper

[25] with changing wireless transmission range. 
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Stepanov and Rothermel [83] proposed an urban scenario simulation for a MANET 

to take into account mobility and wireless transmission differences that are realized in 

city environments. The mobility model considers movement constraints, obstacles, road 

networks and the transmission model considers propagation in city areas. Their study 

shows that realistic simulations for urban environments differ from simpler models and 

provide a better estimation of urban performance. However, this comes at the expense of 

computational complexity and the requirement of detailed data to reflect the physical 

conditions of the simulation area.

2.7 Future Location Prediction

There have been a few studies that investigate prediction of future locations of 

mobile users. The interest in estimating the future locations of users in wireless 

telecommunication networks falls in two main categories; 1) the cell that the user will 

enter in cellular networks, and 2) the future geographical location of the user or users, in 

ad hoc networks.

Papers that address the first group include: [10, 61, 62, 63, 66, 93]. Papers that 

address the latter group include: [8, 30, 67, 84, 85, 86, 89]. Discussion about these studies 

are presented below.

2.7.1 Cellular Models

Liu and Maguire model the movement of mobile users within cells as movement 

circle (MC), movement track (MT) and Markov chain models [61, 62]. The MC model is 
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based on the assumption that users will eventually return to their initial positions. The 

MT model is a uni-directional model, less constrained than the MC model. They use the 

MC and MT models to describe the regular or structured movements of the users, and the 

Markov chain model to describe additional randomness.

A similar two-level model is used to describe human motion in a cellular 

environment by Liu et al. in [63]. The top level is a global mobility model (GMM) whose 

resolution is in terms of cells crossed by the mobile user rather than user coordinates. The 

second level is a local mobility model (LMM) which is used to describe the movement 

within a cell, using speed, direction and position information. GMM is a deterministic 

model whereas LMM is a stochastic model that interacts with the GMM model. The 

GMM is motivated by the fact that the users show some regular patterns during daily 

movements.

Yava et al. propose a data mining approach to extract inter-cell movement history 

regularities and combine that with the current trajectory to estimate the next position in 

[93]. A similar data mining application to location prediction is proposed by Ming-Hui et 

al. in [66]. Bilurkal et al. [10] propose a neural network (NN) algorithm to predict the 

next location of users. They emulated 6 weeks of data with 30 observations per day of 

(time, x-coordinate, y-coordinate) and trained a NN with backpropagation using the next 

x and y coordinates as the output.
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2.7.2 Ad hoc Models

Wang and Chang [89] propose a mobility prediction model to be used for a reliable 

routing protocol. Their model is based on the assumption that the position and velocity of 

a node is known at some time t, the path loss is a free-space loss and all devices have the 

same wireless transmission range R. A node at (x,y) at time to, is expected to be in a

circular region with center (x,y) and a radius of v⋅(t1-to) at time t1. By using this circular 

region to find the farthest possible point that the node can be at, and assuming a constant 

velocity and direction between (t1-to), the estimated link duration time between any pair 

of nodes can be calculated. This information is then utilized to route packets via longer 

duration links. The same principles are used by Su et al. and Tang et al. [85, 86].

Ashbrook and Starner [8] propose a learning algorithm for significant locations and 

motion prediction with GPS. GPS was used to record data for a period of 4 months in 

Atlanta, GA. They only recorded the location data when the subjects were steady. Thus, 

the stations, not the motion, is of interest in their model. They use a Markov model with 

transitions from each location to another.

Mitrovic [67] proposes a model to predict short term user motion to help vehicle 

navigation. A time-delay neural network is developed which allows information about 

signal history be available as an input to the NN. He uses longitudinal and lateral 

acceleration data gathered from two accelerometers, vehicle rotation data, changes in the 

road slope, and GPS position data as inputs.

Creixell and Sezaki [30] propose a time series method with the least squares lattice 

(LSL) method to estimate the parameters. The time series to represent the trajectory are 
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v={v0, v1, v2,…, vn} and Q={Q0, Q1, Q2,…, Qn}, where Q is the amount of displacement 

angle from the horizontal axis, and v is the velocity vector. The prediction model is given 

in equation ( 2-9 )and ( 2-10 ).
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v
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The method does not use the first 20 observations for prediction because LSL needs 

about 20 iterations to converge. The prediction horizon is 10 steps into the future.

As a summary, it can be stated that the first few papers by Wang and Chang [89]

Su et al. [85] and Tang et al. [86] utilize a simple location and velocity based expected 

position to help the routing protocol. The method does not make use of direction, change 

in direction nor change in velocity. The significant location learning approached 

proposed by Ashbrook and Starner [8] only predicts the next important station that the 

user will be in, and does not utilize velocity or direction information. It also is only 

functional over the specific area that is used for the learning. The NN model proposed by

Mitrovic [67] is aimed at predicting car motion. It is trained only using specific 

maneuvers on certain road conditions. However, the proposed neural network approach 

can be adapted for a more generalized motion pattern. Although satisfactory results are 

achieved, the time series method of Creixell and Sezaki [30] has a time series parameter 

prediction problem at every time step, adding to the computational burden.
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In a more recent study, Huang and Zaruba [52] proposed a method that enables non 

GPS equipped ad hoc nodes to estimate their approximate locations by using the 

information from GPS equipped nodes. This would be advantageous in situations where 

GPS equipment or satellite signals are unavailable. Their model involves multiple GPS 

enabled nodes. Other nodes on the MANET approximate their locations by using the 

known node location data and the signal strength between them to estimate a location 

distribution.

2.7.3 Kinematics Approach

Motion is inherently continuous. Where an object stands at a time instant greatly 

depends on where it was a moment ago, and is highly correlated with the space it will 

occupy moments later. Kinematics is a branch of mechanics which describes the motion 

of objects only by means of geographical coordinates, i.e. with no consideration of the 

forces acting on the bodies.

The position of an object is described by its coordinates. The rate of change of 

position is defined as the velocity and the rate of change of velocity is described as the 

acceleration of an object. By using the velocity and the acceleration information, it is 

possible to calculate how the position of an object changes.

In this study, a location prediction method based on kinematics principles is 

developed for MANET users. The location prediction system is integrated into the mobile 

agent location optimizer and it enables the system to utilize past user location 
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information. The details of location prediction using kinematics and its effects on 

algorithm performance are shown in Section 3.4 and Section 7.3.2.

2.8 Heuristic Optimization with Evolutionary Algorithms: Genetic Algorithm and 

Particle Swarm Optimization

Perhaps the most commonly used general purpose heuristics are evolutionary 

algorithms (EA) that mimic the dynamics of natural evolution where the fittest 

individuals survive and transfer their genetic information to the future generations.

2.8.1 Genetic Algorithms

Genetic algorithm (GA) is one of the evolutionary computation methods that 

researchers use when attempting to find approximate solutions to large, complex 

problems. GA was introduced by Holland, and its performance on both combinatorial and 

continuous problems has been studied extensively [31, 44, 51, 65, 78].

A genetic algorithm maintains a population of individuals and applies selection, 

crossover and mutation to the population over generations mimicking the natural 

evolution process. The individuals in the population are represented as a string of digits 

or alphabetical characters, synonymous with the genotype. A typical binary represented 

multi-variable individual is given in Figure 2-3.
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110010110101101001100…1010110

     Var 1        Var 2       Var 3    …    Var n

Figure 2-3 A binary represented multi-variable solution.

In each generation, individuals with relatively better fitness values are given higher 

chances to mate with each other and transfer parts of their genotype to the children in the 

following generations. The fitness of an individual is correlated to its objective function 

value. The correlation should be positive for maximization problems and negative for 

minimization problems. To calculate the fitness of an individual, first its genotype needs 

to be converted from encoding space to the variable space, or phenotype, using a 

decoding function. A binary bit representation for the chromosomes is common among 

GA researchers. A typical decoding function from binary to real space is given in 

equation ( 2-11 ).
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Populations generally become fitter through the generations as a result of the 

mimicked evolution. Initial populations are often created randomly. Search for the global 

optimal is conducted by selecting parent members from the parent population and letting 

them create an offspring population by combining their genetic information. Combination 

of genetic information is done by means of crossover operators. The parent members go 

through crossover with a certain crossover probability, pc. The offspring are mutated after 

crossover, which is also a natural phenomenon. Parent and survivor selections follow 

certain rules, which can differ from one GA application to other. In general, there are 

random, roulette wheel, and tournament selection methods for parent selection. Some 

examples of the crossover operators are single-point, multiple point and uniform 

crossover. Examples of single point and uniform crossover are given in Figure 2-4.

00101 00101110010 0010110100111100

00110 10100111100 0011000101110010

(a)

0010100101110010 0010100100110110

0011010100111100 0011010101111000

(b)

Figure 2-4 (a) Single point crossover. (b) Uniform crossover.

Survival selection can follow either a generational strategy or a steady-state 

strategy. In the generational strategy the entire population is merged with the offspring 

population, whereas in the steady state survival strategy offspring merge with existing 
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members in the parent population immediately after being created. GAs are often elitist, 

i.e. the best individual(s) in the population is(are) preserved and usually not mutated from 

one generation to another.

Population based heuristics have been applied to dynamically changing objectives 

in the literature [14, 15, 92]. Since the movements of mobile network nodes create a 

different topology within the proximity of the previous topology in successive time 

increments, the change in objective function is also incremental. Further, the new optimal 

locations of the mobile agents will be within the proximity of their previous locations due 

to velocity and geographical constraints. Once the population is stabilized, GA’s or any 

other EA’s response to an incremental change in the objective function is expected to be 

relatively fast, benefiting from previous superior solutions [92]. More detailed 

information about EAs in dynamic environments is given in Section 2.9, and the analysis 

of this behavior can be found in Section 7.3.3.

2.8.2 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population based optimization tool which 

emulates the social behavior of species that live in the form of swarms in the nature. 

These swarms are capable of exchanging valuable information such as food locations in 

the habitat. PSO was developed by Eberhart and Kennedy in 1995 [56]. The swarm 

particles in the algorithm communicate and direct the search towards areas in the search 

space with better fitness values.
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PSO has many common aspects with evolutionary algorithms. Like a GA, PSO has 

a population of randomly initialized candidate solutions. Different than the evolutionary 

algorithms, the members of a PSO population do not mate or mutate to create offspring. 

Instead, they swarm over the search space by moving in the solution hyper plane while 

communicating with each other and using the information from superior individuals in 

the swarm as well as their own best positions in the past. The value of their positions are 

evaluated in terms of the objective function.

2.8.2.1 The PSO Mechanism

A swarm particle changes its velocity at each iteration, or time step, aiming towards 

the superior particle in the neighborhood and its best history. This change in the particle 

velocity is also weighed by random factors to provide a robust and diverse search.

Each member particle in the swarm is represented by three vectors X, P and V. 

Vector X represents the current particle location, P represents the location of the 

particle’s historic best fitness and V is the velocity vector that defines the direction and 

magnitude the particle will travel if not disturbed. V is used to update X every iteration. 

The swarm has a global or neighborhood best fitness location vector, G, which is used in 

conjunction with individual P vectors while updating particle coordinates.

Maintaining the G vector relies on a communication scheme within the swarm. As 

mentioned above, the G for a particle is the best found in its neighborhood of particles 

and G is the global best if the swarm employs a global neighborhood. Different 

neighborhood topologies have been studied in the literature and global neighborhoods 

seem to perform better in terms of computational costs [19].
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The Pseudo code of the PSO mechanism is given in Figure 2-5. In Figure 2-5, the 

term ω is the inertia factor, c1 and c2 are the cognition and the social coefficients, 

respectively, and U(a,b) is a uniform random number between [a, b].

Initialize population {

X = U(Xmin, Xmax)

V = U(Vmin, Vmax)

P = X

}

Do While (Stopping criteria not met) {

V = ω⋅V + c1⋅U(0,1)⋅(P −X) + c2⋅U(0,1)⋅(G − X)

X = X + V

if( f(X) is better than f(P) ) then P = X

if( f(X) is better than f(G) ) then G = X

}

Figure 2-5 Pseudo code for basic PSO mechanism.

The PSO has successfully been applied to problems in the continuous domain. It 

has few parameters that require adjustment, which makes the development process 

relatively easy and fast. Implementation is also easy due to its simple but robust 

mechanism. PSO has also been applied to dynamic problems. Eberhart and Shi [37]
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tested PSO on random error introduced problems with multi variables. They show the 

ability of PSO to track the changing objective successfully. Carlisle and Dozier [20]

modified the memory property (P vector maintenance strategy) of the swarm for 

dynamically changing environments. When a change in the problem environment is 

detected, all memory positions are reevaluated and set to either the old memory or to the 

current particle position, whichever is better. Their results show that the PSO can 

successfully track a time dependent objective function.

2.8.2.2 Enhancing PSO’s Performance

Since the major search component in the PSO is the modification of particle 

velocities, controlling the changes in the velocity is a major issue. If left unbounded, 

magnitudes of the particle velocities can reach quite large numbers [56]. There are two 

main methods developed to control the changes in the velocities:

1) Implementing a dynamically adjusted inertia coefficient

2) Using a constriction coefficient

The inertia method employs a dynamically changing ω coefficient. Initially, ω is set 

to 1 and is decreased gradually as the PSO iterations advance [56]. With a relatively high 

inertia coefficient, the current direction and magnitude of the particle’s motion are

weighed highly. As the iterations advance and the inertia coefficient is decreased, 
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changing the direction and magnitude of the particle velocities toward the self and global 

best particles become easier.

The constriction coefficient was developed by Clerc in 1999 [26]. The constriction 

coefficient K improves PSO’s ability to control the growth in velocity magnitudes. It 

scales the velocity updates such that a theoretical convergence is guaranteed. It has been 

found that K combined with Vmax constraints improved the PSO performance significantly 

[36]. The constriction coefficient K and its application to control PSO velocities are given 

as:

( ) ( )[ ]XGRXPRvKV −⋅+−⋅+⋅=
2211

ϕϕ
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In equation ( 2-15 ), R1 and R2 are random numbers drawn from a uniform 

distribution between [0, 1].

2.9 Evolutionary Algorithms in Dynamic Environments

In many real world optimization problems, the objective function, the problem 

instance or the constraints may change over time, also changing the optimal solution to 
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the problem [13, 15, 16, 92]. Yaouchu et al. gives four main reasons that problem 

uncertainties might be taken into account:

1) Noise:  The fitness function is subject to noise. This can happen due to sensory 

measurement errors or randomized simulations.

2) Robustness:  The design variables are subject to perturbation after the optimal 

is determined. The solution is expected to be robust and still be satisfactory with the 

changed design variables.

3) Fitness approximation:  The fitness function is very expensive to calculate 

exactly. A simpler meta-model is used to approximate the fitness function value.

4) Time-varying fitness functions:  The fitness function is deterministic at any 

point in time, but is dependent on time t, as shown in equation ( 2-16 ),

F(X) = ft(X)

( 2-16 )

Therefore, the optimum also changes over time. The optimization algorithm is 

expected to track and locate the changing optimum in each time step. The challenge is to 

reuse the information from the previous environments to speed up the solution process.
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The mobile agent location optimization problem in a MANET falls into the fourth 

category in the above classification. The successive location problem at each time step 

should be solved in real time in an actual application.

In dynamic optimization algorithms, an explicit “solve from scratch” approach can 

be time consuming. Using previously gained knowledge about the search space can speed 

up the next optimization process. If the new optimal solution is guaranteed to be within a 

certain distance of the old one, then restricting the search to only that space will certainly 

be beneficial [92]. As described in the previous section, the new optimal locations of the 

mobile agents need to be within the proximity of their previous locations due to 

maximum velocity and possible geographical constraints. This inherent characteristic 

makes the mobile agent motion optimization problem suitable for dynamic environment 

solution methods.

Many ways can be devised to transfer knowledge from the previous search space. A 

common way is to keep the individuals in the final population of the previous problem 

state [14, 92]. However, explicit actions or strategies are needed to increase diversity and 

facilitate the shift of the population towards the new optimum when a change in the 

environment occurs. There are various ways to accomplish this. The EA can be run in a 

standard fashion, but the diversity can be increased for a short period of time after a 

change is observed. Some examples of this strategy are hypermutation [27] and variable 

local search [88], where the mutation rate is gradually increased after a change in the 

environment is detected. Another method is to maintain diversity throughout the runs. 

This can be accomplished by accepting random individuals, i.e. random immigrants [45], 



www.manaraa.com

37

into the population at every generation. Memory-based approaches are useful when the 

optimum repeatedly returns to past stages [68, 79].

Some meta-heuristics have been applied to dynamic optimization problems. The 

particle swarm optimization (PSO), which is described in Section 2.8.2, is among those. 

More information on evolutionary heuristic algorithms for problems with changing 

environments can be found in the recent survey paper [92].

Considering all the discussions above, a GA and a PSO with dynamic objective 

functions are developed as the mobile agent location optimizer heuristics, to dynamically 

manage the motion of a number of mobile agents in the MANET in order to maximize its 

connectivity. Detailed model of the proposed method is given in Chapter 3, followed by 

the detailed descriptions of the GA and the PSO implementations in Chapter 6.
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CHAPTER 3

3. THE PPROPOSED MANET MANAGEMENT SYSTEM: PROBLEM

DESCRIPTION AND MATHEMATICAL MODEL

A MANET management system is developed that helps maintain connectivity by 

using a number of controlled ad hoc network nodes (agents). Brief descriptions of the 

proposed system, the problem it solves, and its solution operators are given in this 

chapter.

3.1 Introduction

The proposed method consists of managing the directions and magnitudes of 

velocities of a group of mobile agents that have predefined wireless communication 

capabilities similar to the other mobile nodes that form the MANET. The agents actually 

become an integral part of the ad hoc network. Their movements and thus their locations 

are remotely controlled dynamically as the entire MANET topology changes to optimize 

network connectivity. To our knowledge, such a method or algorithm for MANET 

networks has not yet been proposed.

Since the ad hoc network nodes are mobile, only their current and past location data 

are available. The proposed method is designed to make use of the current and the past 
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location data available by the use of a global positioning system (GPS). GPS is a satellite 

based system that can provide readily available and accurate position information almost 

anywhere on Earth. Many GPS implementations are available including integrated GPS 

receivers in mobile phones or mobile network devices [24]. To achieve a real time 

response to the changing network topology, a fast and dynamic algorithm is required to 

continuously optimize the locations of the mobile agents. This problem is a complex, 

non-linear problem that requires a heuristic algorithm with a continuously changing 

objective function. A population based heuristic with a time varying fitness function is 

therefore applied as the heuristic optimizer.

3.2 The Proposed MANET Management System

There are two main types of MANET nodes; user nodes and agent nodes. User 

nodes are the nodes that demand network service. Mobile agents are responsible for 

helping the user nodes experience the best network service possible. The user nodes in 

the MANET move at their own will and it is assumed that their future positions are 

unknown. Also, location data is assumed to be available to the agent control system for 

all times that there exists a communication path between a node nodes and the control 

system. This is technically possible by broadcasting the location information provided by 

the GPS. Finally, every node has a certain wireless connection range and a maximum 

velocity.
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3.3 The Mobile Agent Location Problem

The locations of the mobile agents are under control of a location optimizer that is 

responsible for maximizing the performance objective as a function of the current 

coordinates of the nodes in the MANET. The objective function gauges performance that 

the user nodes experience in terms of being able to communicate with other users and the 

speed of the data transmission rates. Only the users are used to assess network 

performance and only the mobile agent movements are controlled by the centralized 

optimizer.

The problem, which is formulated below, is a non-linear problem and is appropriate 

for a heuristic algorithm. Heuristic optimization algorithms need an objective function 

that responds well to the decision variables. Measures such as minimum node degree or 

connectedness usually show sudden changes in certain regions of the search space, 

depending on the graph’s characteristics. These measures typically show a steady or flat 

behavior over large portions of the search space. This is a phenomenon known as phase 

transition as mentioned earlier [38]. In order to overcome this issue, an objective function 

is needed that is responsive to small changes in mobile agent locations and that also 

reflects network connectivity and performance. This is accomplished using a maximum 

flow approach as detailed in Section 3.3.1.

3.3.1 The Maximum Flow Analogy

In a wireless network, a link’s performance depends on the signal strength, which is 

a function of the link distance and some external factors. In general, the link distance and 
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signal strength, and thus the link data rate, are negatively related. The wireless IEEE 

802.11 standard is capable of linking MANET nodes [41]. Using this protocol, it is 

technically possible to create multi-hop networks that cover several square kilometer 

areas [24]. The 802.11 standard operates at 2.4 GHz, or for some applications at 5.0 GHz. 

The signal attenuation for 2.4 GHz in free space environments is given in [64], as in 

equation ( 3-1 ).

Path Loss  = 32.4 + 20⋅log(f) + 20⋅log(dij)

( 3-1 )

where f is the frequency in megahertz (MHz), and dij is the distance between nodes i and j

in km, and Path Loss is in decibels (dB).

The path loss model is used along with a product specification sheet of a wireless 

access point manufactured by one of the industry leaders to calculate the data transfer rate 

versus distance [69]. The path loss versus data rate chart is given in Table 3-1.

Table 3-1 Path Loss verus Data Rate

Data rate (Mbps) Receive Sensitivity (dBm)

54 -75

48 -76

36 -80

24 -84

18 -88

12 -90

9 -90

6 -93

2 -93
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If a normalized wireless transmission range is considered, equation ( 3-2 ) provides 

a reasonable normalized data rate estimation for location optimization purposes.

( )

( )
1

5.010

1),(

−
−⋅

+=
ij

d

ejiDataRate

( 3-2 )

where dij is the Euclidean distance between nodes i and j.

The function given in equation ( 3-2 ) may not be the most accurate estimation of 

the normalized data rates at intermediate distances, but the path loss and the data rate 

estimation models are all estimates assuming constant interference and certain 

environmental conditions. Also, technical capabilities such as antenna reception of 

devices differ. The device that is presented here is just example. It is expected that the 

manufacturer’s specification curve in Figure 3-1 will shift left or right for different 

products. This is why a general centralized estimation curve is devised. The data rate 

function conforms to the basic requirements of a normalized distance versus data rate. 

When the distance is close to zero, the normalized data rate should be close to one, and 

when the distance is close to one, i.e. the distance is close to the wireless transmission 

range, the data rate should be close to zero. Also exponential decrease of the data rate 

occurs as the distance increases, as observed in practice. The graph of the data rate 

estimation function is given in Figure 3-1 with comparison to a device manufacturer’s 

specifications.
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Figure 3-1 Normalized distance vs. normalized data rate, range = 450 m.

At any time t, a MANET is modeled as a transportation network with flow 

capacities equal to the data rates of the wireless links. An intuitive first measure is then 

the maximum flow values between the pairs of nodes. The maximum flow values 

between every node pair give a good sense of the overall network performance. Trying to 

maximize the minimum of those maximum flows between every user pair is a responsive 

objective function, and is suitable for the mobile agent location optimizer. The maximum 

flow problem is a well known network optimization problem and there are various 

algorithms readily available to optimally solve it, including ones in polynomial time [2, 

40]. Maximizing the minimum of maximum flow values between user node pairs is very 



www.manaraa.com

44

similar to a problem that exists in the literature, the all-pairs maximum flow (or 

minimum-cut) problem [2, 6, 49, 50].

Let’s consider a capacitated network Gt = (Nt,Et) with a non-negative capacity uijt, 

associated with each link (i,j) at time t. Further, two special nodes in network Gt are 

specified; a source node S, and a target node T. The formulation of the maximum flow 

problem between the source S and the target T at time t is as follows:

MaxFlow(Gt,S,T) = Maximize f

Subject to

{ } { }
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ijtij
ux ≤≤0

( 3-4 )

where xij is the amount of flow from node i to node j and uijt is the capacity of  link (i,j) at 

time t.

3.3.2 The Mathematical Model

Notation

UNt the set of user nodes at time t

ANt the set of mobile agent nodes at time t

Nt the set of all MANET nodes at time t, 
ttt

ANUNN ∪=
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t
u

n the number of mobile user nodes at time t, 
t

UN

t
a

n the number of mobile agent nodes at time t, 
t

AN

nt the total number of MANET nodes at time t, 
t

N

Et the set of links between all MANET nodes at time t

to initial time

Rit the wireless connection range of the i
th

 node at time t

(xit,yit) x and the y coordinates of the i
th

 MANET node at time t

XYt {(xit,yit) : i∈Nt} , the set of x and y coordinates of the MANET 

nodes at time t

XYdestin {(xjdestin,yjdestin) : j∈UN} , the set of x and y coordinates of user node 

final destination points

(Xmin, Xmax) x-axis boundaries

(Ymin, Ymax) y-axis system boundaries

rit rotation angle (rad, counter clockwise) from the x-axis of the i
th

mobile agent at time t

vit the speed of the i
th

 mobile agent at time t

i

v
max

the maximum speed of node i user or agent

),( ji
t

e 1 if there exists a link between (i,j) at time t, 0 otherwise

ijt
u the capacity of the link between (i,j) at time t, i.e. DataRate(i,j)

U(a,b) uniformly distributed random number between a and b

zijt 1 if there exists a path between (i, j) at time t
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M a big enough number for computational use

For any time t, and set XYt = {(xit,yit) : i∈Nt}, the graph Gt = (Nt,Et) is formed as 

follows:


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 ≥≥
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otherwise0

andif1
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e
ji

( 3-5 )

where i,j ∈ Nt  and dijt is the Euclidean distance between nodes i and j at time t as given in 

equation ( 3-6 ).

( ) ( )
22

jtitjtitijt
yyxxd −+−=

( 3-6 )

The formation of a link is a function of the signal attenuation between the nodes, 

and can depend on factors other than distance. In that case, the proper attenuation model 

will replace equation ( 3-2 ). The remainder of the model will not be affected. The 

mathematical model for the mobile agent location optimizer is then written as given in 

equations ( 3-7 ) through ( 3-9 ).
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0 ≤ rit ≤ 2π ∀i∈ANt

( 3-8 )
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3.3.3 The Objective Function

The term O1 in equation ( 3-7 ) is the user pair with the worst possible maximum 

flow value. O2 is the total maximum possible flows between all user pairs, scaled down 

by the maximum number of possible direct links among the users. This scaling ensures 

that O2 is not given more importance than O1. Finally, the connectivity term O3 ensures 

that no communication path between a user pair is sacrificed for better O1 or O2 values. 

This gives connectivity the greatest importance among the three factors.
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An algorithm is coded for the calculation of the maximum flow value between all 

user node pairs and is invoked during each objective value calculation. The maximum 

flow between the pairs of nodes is calculated by an implementation of the highest-label 

push-relabel algorithm. The push-relabel algorithm was proposed by Goldberg and 

Tarjan [43]. Cheriyan and Maheshwari [22] show that the algorithm runs in ( )mnO
2

which is a tighter bound than the ( )
3

nO  which Goldberg previously stated [42]. The 

implemented version is the most efficient maximum flow algorithm in practice [2] and is

available from the BOOST C++ libraries, which is a peer-reviewed, freely available

software library collection [12].

The MaxFlow algorithm is called to calculate the flow between every user pair 

unless a direct link exists in between with a larger data transmission capacity than the 

user pair with the current lowest maximum flow. The Pseudo code is given in Figure 3-2.

The 
Min

t
F  and 

Tot

t
F  are used to calculate the O1 and O2 values in the objective function.
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Start{

Set 
Tot

t
F  = 0

Set 
Min

t
F  = M

for ( S in UNt = 1 to nu-1 ){

for ( T in UNt = S + 1 to nu ){

If ( eS,T = 1 AND uS,T > 
Min

t
F ) then {

Tot

t
F =

Tot

t
F  + uS,T

}

Else {

FST = MaxFlow(G,S,T)

Tot

t
F =

Tot

t
F  + FST

If ( 0 < FST < 
Min

t
F ) then {

Min

t
F = FST

}

}

}

}

}End

Figure 3-2 The pseudo code for the components of the objective function calculation

In the worst case, the MaxFlow(Gt,S,T) algorithm is executed for a  total of 

2/)1( −
tt

uu
nn  times. The all-user-pairs maximum flow calculation is made more efficient 

by excluding node pairs that are guaranteed to have a larger flow than a known lowest 

maximum flow pair.
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3.3.4 The Mobile Agent Velocity Constraints

There is an important advantage of implementing a polar coordinate system when 

optimizing the mobile agent relocations. If the rectangular coordinates of the agents are 

taken as the decision variables, satisfying the velocity constraints would require 

calculation of Euclidean distances and taking necessary measures within the algorithm 

such as penalization of unwanted or infeasible solutions. On the other hand, using polar 

coordinate components for the direction and magnitude of agent velocity vectors resolves

this issue.

The velocity vector rotation ri bounded by [0, 2π] and the magnitude vi bounded by 

[0, vmax] allow the search method to move the mobile agents freely within a circle of 

radius vmax, thus automatically complying with the velocity constraint. The Cartesian 

coordinates at time (t+1) can then be calculated as given in equations ( 3-10 ) and 

( 3-11 ).

xi(t+1) = xit + cos(rit) ⋅ vit ∀i∈ANt

( 3-10 )

yi(t+1) = yit + sin(rit) ⋅ vit ∀i∈ANt

( 3-11 )

Once the Cartesian coordinates of the mobile agents are known for time t+1, then 

the graph Gt+1 can be drawn and its connectivity and data flow capacity properties can be 

calculated for the objective function.
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3.4 Future Location Prediction Using Kinematics

Since the MANET users envisioned in this study are allowed to move freely within 

no preset boundaries or paths, an accurate and practical future position estimation method 

is developed by making use of the laws of kinematics. The only data needed for the 

future position prediction of an ad hoc user is its position history from three time steps 

back. With position data at each time step from time (t-3), it is possible to calculate the 

rate of change of acceleration, which is equivalent to the third derivative of the position.

Any older time observations do not affect the practical accuracy of future location 

prediction. The GPS systems that are assumed to be available to all MANET users 

provide accurate position information that is used by the location prediction method. The 

components of the kinematics based location prediction method are given below:
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In the formulations of equations ( 3-12 ) through ( 3-19 ), vt indicates the calculated 

velocity for time t, at indicates the change in velocity, i.e. acceleration, between time t

and t+1. ∆at is the rate of change of acceleration between t-1 and t. Finally, ∆xyt is the 

change in x and y coordinates, and 
p

t
XY

1+
 is the set of predicted x and y coordinates at time 

t+1.

Set t = current time

for ( repeat = 1:H ){

p

t
XY

1+
 = XYt+∆xyt

1+t
XY = 

p

t
XY

1+

t = t+1;

}

Figure 3-3 Pseudo code for predicting the location at time (t+H)
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Figure 3-4, Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8 represent example 

cases of future location prediction of a single user in a time frame of 100 time steps for 

prediction horizons (H) of 0, 2, 4, 6 and 8 time steps, respectively. An H value of 0 

means no prediction is performed.

In Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8, the trajectories marked by + 

show the predicted locations of the user. Increasing prediction error is observed clearly as 

H increases from 2 to 8 time steps.

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

Time# 100

Figure 3-4 Real trajectory (H = 0)

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

Time# 100

Figure 3-5 Location prediction with H = 2
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Figure 3-6 Location prediction with H = 4

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

Time# 100

Figure 3-7 Location prediction with H = 6

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

Time# 100

Figure 3-8 Location prediction with H = 8
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When the mobile agent location optimization is done with future location data, two 

minor changes to the algorithm are necessary. One is the conversion of the velocity 

constraints into travel distance constraints for a time span of H. This is required because 

the system with future location prediction tries to relocate the agents from their positions 

at time t to their optimized locations at time t+H. The second modification is the 

interpretation of the result at t+H and its application at time t+1, which is where the 

agents are going to be deployed next.

The velocity constraints of mobile agents are converted to travel distance 

constraints as shown in equation ( 3-22 ), and the coordinates of the mobile agents at time 

t+1 are calculated according to equations ( 3-23 ) and ( 3-24 ).

0 ≤ vit ≤ Hvv
ii

⋅=
max

'

max
∀i∈ANt

( 3-22 )

xi(t+1) = xit + cos(rit) ⋅ vit / H

( 3-23 )

yi(t+1) = yit + sin(rit) ⋅ vit / H

( 3-24 )

In equations ( 3-22 ), ( 3-23 ) and ( 3-24 ), the maximum travel distances that the 

mobile agents can cover are calculated. Then, the optimized movement at H time steps is 

scaled down to a single time unit by keeping the direction constant and scaling the travel 

distance down by H.

In this chapter, the mobile agent location problem is defined and modeled as a 

maximum flow problem variant. An objective function that reflects MANET connectivity
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and overall data transmission speed, and which is sensitive to small changes in mobile 

agent locations is developed.

The agent velocity constraints are successfully handled with the use of polar 

coordinate transformations. This allows any heuristic algorithm to perform an effective 

search without violating velocity constraints.

The results of the kinematics based future location prediction are satisfactory. 

While the prediction error is expected to increase as the prediction horizon increases, the 

mobile agent location optimization is found to benefit from the additional information 

gained by a modest prediction horizon. A prediction horizon, H, of 4 time steps is found 

most beneficial. Analysis of the effect of prediction horizon on agent location 

optimization is given in Section 7.3.2.
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CHAPTER 4

4. A SPECIAL GENETIC ALGORITHM WITH NON-DETERMINISTIC 

BINARY DECODING FOR CONTINUOUS PROBLEMS

For a continuous domain, a genetic algorithm (GA) is usually encoded using a 

binary string because of simplicity and established common use. However, when a 

continuous domain is represented using a binary string only a finite number of discrete 

points are actually represented [44]. The number of represented discrete points relates to 

the number of binary digits so the length of binary string defines the resolution of the 

binary to continuous domain mapping, as well as the precision of the returned solution. 

For a problem with 100 variables, the required number of binary digits for a precision of 

six digits after the decimal point can reach thousands. For such problems, the 

performance of GAs is quite poor [65].

Various approaches have been developed to address the representation precision 

problem [59, 76]. A GA that uses a real number coding can be used but requires different 

crossover and mutation operators [65]. Also, the theory of genetic search is currently 

better established for binary string representations than for real representations [65].
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4.1 Background

A few studies focus on the binary representation resolution deficiency. Schraudolph 

and Belew [76] introduced a method, dynamic parameter encoding (DPE), which 

repeatedly improves the precision by re-mapping the genes to promising smaller search 

regions and thus searching a finer resolved section. DPE divides its search interval into a 

certain number of sections and zooms into a “good” region that is identified by statistical 

information collected during previous generations. Kwon et al. [59] recently proposed a 

similar algorithm, the successive zooming genetic algorithm (SZGA), using continuous 

zooming factors. In their method, the search space is zoomed around the best point of the 

last 100 generations. Both methods sacrifice some portion of the search space as 

evolution progresses, in order to achieve better resolution. This might result in loss of the 

search space that contains the global optimum.

The method proposed here enables a GA to search the regions that are left out by 

conventional decoding functions as a result of finite resolution. Binary strings are 

decoded with a small Gaussian perturbation instead of being decoded on the same 

discrete points every time. This enables the GA to search the region between two 

adjacent discrete points of a conventional decoding. The non-deterministic decoding is 

coupled with a mapping rearrangement mechanism that continuously uses the 

information gathered from GA’s evolution such that the best known solution is the 

expected decoded value of the corresponding best chromosome.

The proposed algorithm will be referred to as the non-deterministic binary 

decoding GA, or NDBGA, in the following sections. NDBGA is introduced and its 
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details are given in Section 4.2. Tests and analysis of its performance over a variety of 

test functions, as well as comparisons to DPE and SZGA are presented in Sections 4.2.6

and 4.2.7.

4.2 NDBGA Algorithm

NDBGA is a binary coded GA for the optimization of continuous multi-

dimensional functions. Details on the modified binary decoding function and other 

NDBGA operators are explained in this section.

4.2.1 Motivation

When GAs are used for continuous optimization problems, the parameters are often 

encoded as binary strings. A typical binary encoding/decoding scheme works as follows; 

let xi be the i
th

 variable of a function in a continuous search domain. A binary string 

chromosome of length l, used to encode xi will represent 2
l

discrete values of xi, starting 

at its lower bound and ending at its upper bound. Thus, the search space for xi is divided 

into 2
l

-1 intervals. Conventional decoding, or mapping, from binary to continuous space 

is done as given in equations ( 2-11 ) and ( 2-12 ).

4.2.2 Non-deterministic Binary Decoding

The NDBGA algorithm uses a decoding function that maps a certain chromosome 

not to one specific point, but to a neighborhood or region around it, by adding a Gaussian 

offset with zero mean to the decoded value. This is identical to adding a Gaussian offset 
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to the lower bound of the variable that is used in the decoding function and then decoding 

the variable using this new lower bound. Every chromosome is assigned a specific area in 

the search space and these areas do not overlap. In a two-dimensional search space 

(Figure 4-1) each grid intersection point represents the center points of the rectangular 

regions that chromosomes are responsible for. This can be better visualized in Figure 4-2. 

In Figure 4-2, chromosomes ca and cb are given chances to represent points in the dotted 

and shaded areas, respectively. With conventional decoding, only the center points would 

have been represented.

Figure 4-1 Two dimensional binary coded search space

Figure 4-2 Regions represented by chromosomes ca and cb in NDBGA, a two 

dimensional case
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Let ci be the binary chromosome string for the i
th

 variable and let rci be the decoded 

real value of ci. With non-deterministic decoding, ci represents a Gaussian random 

number with mean rci, and a standard deviation of Khi, where hi is the resolution half 

width of the i
th

 variable given by equation ( 4-2 ) and K is a user defined scaling factor.

12 −

−

=

i

ii

l

lbub

i

)x(x

w

( 4-1 )

2

i

i

w

h =

( 4-2 )

where;

wi is the interval width of the i
th

 variable

i
lb

x

is the lower bound of the i
th

 variable

i
ub

x

is the upper bound of the i
th

 variable

li is the chromosome length for the i
th

 variable

The NDBGA decoding function can be derived by implementing a dynamic lower 

bound value and a Gaussian offset in a conventional decoding function as in equation

( 4-3 ).

),0(

12

)()(

)(
iil

ilbub

i
KhNlb

cdecimalxx

cndecode
i

ii

++

−

×−

=

( 4-3 )
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where;

i
lb

x is the lower bound of the i
th

 variable

i
ub

x is the upper bound of the i
th

 variable

ci is the chromosome for the i
th

 variable

li is the chromosome length for the i
th

 variable

decimal(ci) is the decimal value of ci

lbi is the lower bound of the i
th

 variable used for decoding

N(0,Khi) is a Gaussian random number with mean 0, and standard deviation Khi

K is a user defined constant, used to scale the standard deviation of the 

Gaussian offset

hi is the interval half-width of the i
th

 variable

Figure 4-3 illustrates the Gaussian mapping onto the search space. Each peak is the 

expected decoded value of the corresponding chromosome. The X1 and X2 axes are 

variable axes and, the pdf is the Gaussian probability density function value.

Figure 4-3 Gaussian mapping from binary representation grid to the search space
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Initially, the peak points correspond to the points that would have been represented 

by the regular binary mapping. As NDBGA progresses, information from the individual 

with the best fitness in each generation is continuously used to update the decoding lower 

bound values so that the optimum peak point in the updated mapping correspond to the 

best known solution. Thus, the decoded value of the best known chromosome will always 

be based on the best known solution so far. This process is referred to as the mapping 

rearrangement property of NDBGA. Change of expected values of chromosomes can be 

visualized as a geometrical rearrangement of the binary representation grid.

The mapping rearrangement is determined by the best known individual. This is 

illustrated in Figure 4-4 for a two dimensional case. The black grid represents the initial 

binary mapping and the gray grid represents an intermediate stage, which has been 

rearranged to position the superior individual S at its corresponding grid intersection 

point. After the rearrangement, if the chromosome of S is decoded with zero offsets, point 

S will be precisely located.

Figure 4-4 Graphical representation of binary mapping rearrangement for the 2D case
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The binary to real mapping is rearranged continuously as the population evolves. It 

is important to note that rearrangement does not alter regions that the chromosomes are 

responsible for. If we consider Figure 4-2, if the best known solution is in the dotted 

region, it will be represented by ca. Similarly, if it is in the shaded region, it will be 

represented by cb, etc.

The mapping rearrangement is done by updating elements of lb whenever a solution 

that is superior to the best known is created. The procedure is described in Section 4.2.3.

4.2.3 Mapping Rearrangement Mechanism

A binary mapping can be rearranged by altering the variable lower bounds vector, 

lb. When an improvement on the best-known solution is realized, the lb vector is updated 

according to equation ( 4-4 ).

( ) ( ) iNlblb
iii

∀+=
soldnew

( 4-4 )

where;

(lbi)new is the updated lower bound of the i
th

 variable

(lbi)old is the previous lower bound of the i
th

 variable

Nsi is the Gaussian offset that was generated for the i
th

 variable of the superior 

individual
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4.2.4 NDBGA Algorithm Structure

While the non-deterministic decoding idea could be used with any binary GA, the 

one that is designed for experimentation is described here.

Notation

varsize the number of variables in problem

l the length of the binary string for a variable

µ population size

q tournament size

ncouple the number of parent couples

λ total number of offspring created (λ = 2 × ncouple)

pc crossover probability

bm bit mutation probability

λreplace the number of worst individuals replaced by offspring

PopBest best individual of the current population

BestSoFar best individual found so far

Ni Gaussian offset generated when decoding the i
th

variable of an individual

Each individual in NDBGA has a total of (varsize⋅l) genes as its genotype, and also 

stores a real value for each of its variables for the mapping rearrangement mechanism.

Initially all members are generated randomly by assigning 0 or 1 to their binary genes, 

with equal probabilities.
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By changing the ncouple parameter, NDBGA can behave as a steady-state GA, a 

generational GA, or anything in between. Each couple contains two parents. The same 

parent member can appear in more than one couple but it cannot appear more than once 

in one couple. Parent selection is done using a tournament selection of size q. Each 

couple produces two children by crossover with a probability of pc. If a couple is to 

undergo crossover, either a uniform crossover or a single-point crossover takes place with 

equal probability. Every child is subject to mutation with a bit mutation probability of bm. 

Each of the bits in a child’s chromosome is flipped with a probability of bm. Figure 4-5

shows the flowchart of the NDBGA.
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Figure 4-5 NDBGA flowchart

Every time an individual superior to the current BestSoFar is generated, the lb

vector is updated.

4.2.5 Gray Coding

Gray coding is a commonly applied method to transform a binary mapping such 

that adjacent points in the search space differ by one bit only in genotype. This eliminates 

the problem of small mutations producing solutions far away from the original point [44, 

START

Initialize µ individuals

Initialize lb as

ixlb
ilbi

∀=

Evaluate µ individuals

using ndecode(c)

Pick 2×ncouple parents

Generate λ offspring

Evaluate λ offspring

using ndecode(c)

Replace worst λreplace individuals 

with best λreplace offspring

Update

lb

END

Stopping criteria met?

NO

YES

NO

YES
PopBest better 

than BestSoFar?
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65]. NDBGA can be used with any binary encoding scheme, either Gray coded or not. 

Gray coding has been shown to improve GAs’ performance on many types of continuous 

problems [21]. There are many different ways to Gray code binary strings and below is 

the conversion rule used in this study;

Let cb be the binary chromosome string, cg be the gray coded chromosome, and l be 

the chromosome length. Start with assigning the higher ordered bit in Step1:

Step1
ll

gb
cc =

Step2 i = l-1

Step3 ( ) i
g

ii

c

bb
cc

1+

=

Step4 decrease i by 1.

Step5 Goto Step3 if i > 0, otherwise stop.

Where
i

b
c and 

i
g

c  are the i
th

 elements of cb and cg, respectively.

4.2.6 Testing NDBGA

NDBGA was tested on a set of 20 test problems, including the test sets used by 

Schraudolph et al. for DPE and test sets used by Kwon et al. for SZGA to see how 

NDBGA compares to these algorithms [59, 76]. The remainder of the test suite is 

compiled from well known multi-modal and multi-dimensional continuous optimization 

problems. The complete test suite is in Table 4-1 and Table 4-2.
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All problems are multi-dimensional and many have numerous local extrema that 

challenge search algorithms. All problems were tested for minimization. Functions F1 

through F5 are De Jong’s test functions and were used by Schraudolph et al. to test DPE. 

Function F5 was also used by Kwon et al. Functions F6 through F14 are the remainder of 

Kwon et al.’s functions used to test SZGA. F4 in Kwon et al.’s paper could not be tested 

due to its unbounded variables.

Function F1 is a convex three-dimensional parabola with a minimum at the origin. 

It is a relatively easy function to optimize. F2 is a widely studied test function which was 

first proposed by and named after Rosenbrock. It is a non-convex, unimodal function 

with a deep parabolic valley along the curve 
2

12
xx = [31]. F3 is a 30 dimensional, 

discontinuous step function. F4 is a convex and unimodal 30 dimensional quadric 

function with Gaussian noise. It is useful to test the performance of an optimization 

algorithm under the presence of noise. F5 is known as Shekel’s foxholes [31]. It is an 

interesting two-dimensional multi-modal function with 25 local minima. F6 was 

proposed by Bohachevsky et al. and is a two-dimensional function with numerous local 

minima and a global optimum at the origin [39]. When (x1,x2) is far from origin, the 

quadratic terms of F6 dominate the cosine terms, thus giving an overall quadratic shape 

to the function [39]. F7 is the second function in Kwon et al.’s test suite. It is a multi-

modal function with 16 local minima. F8 is commonly known as the Branin-RCOS 

function and has a global minimum at three different locations [34]. F9 is known as the 

six-hump camelback function and has three conjugate pairs of local optima, one of which 

is the global minimum [87]. F10, known as Goldstein-Price function, has four local 
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minima and a global minimum [87]. F11, also known as the Shubert function, has 760 

local minima, 18 of which are global minima [65]. F12, also known as the Colville 

function, is a 4 dimensional function with a global minimum at (1,1,1,1), a stationary 

point at (1,-1,1,-1), and further local minima. A very narrow valley runs from the 

stationary point to the minimum [78]. F13 and F14 are the last two test functions in 

Kwon et al.’s test suite. They are both 20 dimensional functions with global optimal 

values of 0. The remainder of our test suite consists of a variety of functions ranging from 

2 to 30 dimensions.

F15 is a 2 dimensional, highly multi-modal function proposed by Schaffer [75].  

F16 and F17 are 5 and 20 dimensional variants of the generalized Rastrigin function, 

respectively. The function was first proposed by Rastrigin as a 2-dimensional problem, 

and generalized by Rudolph as a test function for distributed parallel evolutionary 

strategies [77, 87]. F18 is a 30 dimensional version of the sphere function F1. F19, 

known as Schwefel’s problem, is a continuous and unimodal problem [77]. Finally, F20 

is another function by Bohachevsky with 10 dimensions. It has numerous local optima 

and a global optimum of 0. Optimizing F20 requires a simultaneous minimization of 10 

multi-modal functions [39].
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Table 4-1 Test Functions F1-F10

Fn. Equation Dim. Variable range

Theoretical 

optimum

(f*)

F1 ∑
=

3

1

2

i

i
x 3 [-5.12,5.12] 

f* = 0.0

at

xi* = 0

F2
2

1

2

2

2

1
)1()(100 xxx −+− 2 [-2.048,2.048] 

f* = 0.0

at

xi* = 1

F3  ∑
=

30

1i

i
x 30 [-5.12,5.12] 

F* = -30.0

at

xi* ∈ [5.12,

-5)

F4 ( )1,0

30

1

4

Gaussianix

i

i
+∑

=

30 [-1.28,1.28] 

f* = 0.0

(underlying 

function)

at

xi* = 0

F5

1

25

1

1

2

1

6

)(002.0

−

=

−

=




































−++ ∑ ∑
j i

iji
axj 2 [-65.536,65.536] 

f* = 

0.9980038

at

xi* = -32













=

323232323216161616160000016-16-16-16-16-32-32-32-32-32-

3216016-32-3216016-32-3216016-32-3216016-32-3216016-32-

a

F6 7.0)4cos(4.0)3cos(3.02
21

2

2

2

1
+−−+ xxxx ππ 2 [-1.28,1.28] 

f* = 0.0

at

xi* = 0

F7 [ ] [ ])5.3cos()3cos(1.21.2)5.2cos()2cos(
2211

xxxx ππππ −−×−+ 2 [-1,1] 

f* = -

16.0917200

at

(0.4388,

-0.3058)

F8 10)cos()

8

1

1(10)6

5

4

1.5

(
1

2

1

2

1
2

2
+−+−+− xxxx

πππ

2

x
1

∈ [-5,10] 

x
2

∈ [0,15] 

f* = 

0.3978873

at

(-3.142, 

12.275)

(3.142, 

2.275)

(9.425, 

2.245)

F9

2

2

2

221

2

1

4

12

1
)44(

3

1.24 xxxxx

x

x −++

















+− 2 [-5,5] 

f* = -

1.0316285

at

(0.08983,

-0.7126)

(-0.08983, 

0.7126)

F10

( ) ( ){ }

( ) ( ){ }
2

2212

2

11

2

21

2

2212

2

11

2

21

2736481232183230

36143141911

xxxxxxxx

xxxxxxxx

+−++−−+

×++−+−+++

2 [-2,2] 

f* = 3.0

at

(0, -1)
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Table 4-2 Test Functions F11-F20

Fn. Equation Dim. Variable range

Theoretical 

optimum

(f*)

F11



















++×



















++ ∑∑
==

5

1

2

5

1

1
))1cos(())1cos((

ji

jxjjixii 2 [-10,10] 
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186.7309088
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-0.800)
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2
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2
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xxxx

xxxxxx
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x
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
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1
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1

2
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1

2

102cos10

i
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=
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1

2
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1
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i
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1

1

2

1

2

xxxx

xxxx

i
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ππ
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General performance measures that are considered can be listed as; the average 

number of function evaluations before the population best reaches the global optimal 
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within a tolerance limit, the standard deviation of number of function evaluations, the 

objective value of the population best, the average objective value of the population best, 

and the standard deviation of the objective value of the population best. All of the 

statistics are calculated over 20 repetitions with different random number seeds for each 

function.

For fair comparisons with DPE and SZGA, NDBGA was limited to the 

corresponding number of function evaluations, where applicable, for test functions F1 

through F14. For all other results provided, the function evaluation limit is set to 500,000 

for each run. 

It is well known that GAs generally require larger population sizes as the number of 

variables increase, for better performance. After preliminary experiments, the population 

size of NDBGA was set to 30 for functions with less than 10 variables, and to 100 for 

others. Using a generational strategy provides better diversification and performed well 

on problems with less than 10 variables but it greatly decreased the convergence ability 

for larger problems. An elitist generational strategy was used for problems with less than 

10 variables, and a steady-state strategy was employed for the larger problems. A fixed 

bit string length of 8 was used for all test functions, unless indicated otherwise. Other 

fixed parameters related to the evolution dynamics are given in Table 4-3.

Table 4-3 NDBGA Population Parameters

Population

size

(µ)

Number of

couples

(n
couple

)

Tournament

size

(q)

Offspring

size

(λ)

λ
replace

p
c

b
m

K

30 15 2 30 29 0.85 0.05 0.050

100 1 2 2 2 0.85 0.01 0.001
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4.2.7 NDBGA Performance

NDBGA performed satisfactorily throughout the entire test suite Table 4-4 and 

Table 4-5 summarize the performance comparisons of NDBGA with DPE and SZGA on 

test functions F1 through F5 and F5 through F14, respectively.  Both tables are structured 

the same way.

Table 4-4 presents the best and the average results of NDBGA along with the 

average results of DPE. NDBGA performs at least as good as DPE except for F4, the 

noisy problem. It is not clear from Schraudolph et al.’s paper if the reported values of F4 

were noise-free or not. NDBGA’s performance measures for the noisy F4 function is 

calculated by using the noise-free values of the function since it is the underlying 

function that is optimized. A completely noise-free version of F4 was also tested and 

presented along with the original version.

Table 4-5 presents the best and the average NDBGA results in comparison with best 

results reported for SZGA [59]. Again, NDBGA performs at least as good as SZGA with 

the same number of function evaluations allowed.
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Table 4-4 Results for F1-F5 Compared With DPE

DPE results
a

NDBGA results
a

Fn.

Theoretical

minimum

Number of

function

evaluations

Population 

average

Population best

Average

population best

F1 0.0 12,000 1×10
-18

<1×10
-30

<1×10
-30

F2 0.0 6,000 3×10
-2

<DPE<1×10
-1

2.1×10
-8

1.66×10
-2

F3 -30.0 4,000 1×10
-2

-30.0 -30.00

F4
b

0.0 10,000 3×10
-1

5.1×10
-1

5.16×10
-1

F4

c

0.0 10,000 Not available 2.42×10
-1

2.77×10
-1

F5 0.9980038 18,000 9.98×10
-1

9.98×10
-1

9.98×10
-1

a

NDBGA and DPE results are with 3 bits per variable for F1 through F4 and 6 bits per variable for F5.

b

Values for the underlying function are presented.

c

Values for F4 optimized with no noise are presented.

Table 4-5 Results for F5-F14 Compared With SZGA

SZGA results
a

NDBGA results 
a,b

Fn.

Theoretical

minimum

Number of

function

evaluations
Population best Population best

Average

population best

F5
c

0.9980038 8,000 9.98×10
-1

9.98×10
-1

9.98×10
-1

F6 0.0 4,000 2.98×10
-8

5.55×10
-17

5.55×10
-17

F7 -16.0917200 4,000 -16.09172 -16.0917200 -16.0037882

F8 0.3978873 4,000 0.39789 0.3978874 0.3979254

F9 -1.0316285 3,000 -1.03163 -1.0316284 -1.0316249

F10 3.0 4,000 3.0 3.0000000 3.0000000

F11 -186.7309088 3,000 -186.73091 -186.7309088 -186.7282441

F12 0.0 228,000 1.3074×10
-6

1.04×10
-6

0.1629989

F13 0.0 500,000 2.5422×10
-8

5.08×10
-10

7.61×10
-10

F14 0.0 668,000 2.3033×10
-4

7.85×10
-10

1.41×10
-9

a

NDBGA and SZGA results are with 8 bits and 12 bits per variable, respectively.

b

Presented results are calculated over 20 runs with different random number seeds.

c

NDBGA was limited to 8,000 function evaluations for F5 when compared with SZGA, which is different than 18,000 function 

evaluation limit used for comparison with DPE.
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For the comparison of NDBGA with DPE given in Table 4-4, NDBGA was set to 3 

bits per variable for the functions F1 through F4 and 6 bits per variable for F5. DPE was 

tested with a fixed binary string size of 3 per variable for functions F1 through F5 [76]. 

This resolution of DPE was not enough for F5, but with a resolution of 6 bits per variable 

DPE was able to converge to the global optimal in 18,000 function evaluations. For the 

F5 function, NDBGA converged to the global optimal with 6 bits per variable in 1,400 

function evaluations on average. SZGA was tested with 12 bits per variable [59]. 

NDBGA’s binary string size was kept at 8 bits per variable for comparisons with SZGA

as given in Table 4-5. The high number of function evaluations of DPE might be a result 

of the “folding” process where the individuals falling out of the zoomed in region are 

recalculated using new bounds, and this requires objective function evaluations equal to 

the number of individuals recalculated. Similarly, in SZGA, the population is reset every 

time the intervals are changed. NDBGA does not re-initialize individuals like DPE and 

SZGA and it can therefore conserve objective function evaluations while converging to 

global optimal.

The general performance measures of the NDBGA on the entire test suite, also 

compared with a conventionally decoded GA (CDGA) are tabulated in Appendix Ap- 1, 

page 184. CDGA is identical to NDBGA algorithmically and parameter-wise except for 

the decoding method. It also uses the same Gray coding scheme but it has the 

conventional binary to real decoding function.

The tolerance limit, t, is set to 10
-7

 for all functions except the noisy F4, which had 

a tolerance limit of 0.25. When the best individual in the population reaches an objective 
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function value that is closer than t to the theoretical minimum, it is considered a 

successful convergence. All problems successfully converged to the theoretical optimum 

100% of the time, except the noisy F4, which had a success rate of 55%.

The encoding mechanism presented in this chapter enables a binary coded genetic 

algorithm to perform an efficient and effective search in the continuous domain. It is very 

easy to convert a standard binary coded GA into NDBGA. The standard binary coded GA 

in the continuous domain usually suffers from long chromosome strings, which can have 

adverse effects in its performance due to some second order effects. i.e. effects due to the 

algorithm mechanism, not due to problem size or complexity. Moreover, the number of 

generations it takes to converge to a superior solution increases with increasing 

chromosome length.

The NDBGA mechanism helps the GA in two ways. One is the shorter 

chromosome length. The other is the fine search undertaken by the mapping 

rearrangement mechanism without increasing the number of function evaluations per 

generation. This helps keep down the overall number of generations and thus the total 

number of objective function evaluations, which is critical for the computationally 

intense functions in this study. As shown in Section 7, the NDBGA performs very 

satisfactorily over different types and sizes of test instances.
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CHAPTER 5

5. AN APPROXIMATE LINEAR MODEL WITH PIECEWISE LINEAR 

APPROXIMATIONS FOR DISTANCE AND DATA FLOW RATE

The mobile agent location optimization model proposed in this study involves a 

complex and non-linear objective function as well as non-linear constraints. Although 

this is a typical scenario where researchers and practitioners benefit from using heuristic 

optimization methods, a similar model is developed as a mixed-integer programming 

(MIP) model by approximating the  non-linear parts of the original model by piecewise 

linear curves. This model is then used to compare the performances of the heuristics up to 

medium sized (10-15 nodes) problems.

5.1 Mathematical Model

The approximate mixed integer model is developed by modification of a standard 

maximum flow model to incorporate the all-pair maximum flow calculation. This allows

relocation of agent nodes considering the velocity constraints and enables varying link 

capacities with varying link distances.

The basic idea for the all-pair maximum flow calculation is to let virtual 

commodities, equal to the number of node pairs, flow through the network without 
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sharing link capacities between commodity types. All distance calculations are 

approximated to the Euclidean distances by mapping the orthogonal components of the 

link and agent travel distances to their second power and summing them to get the square 

of the said distances. The velocity and data rate constraints are then handled using the 

distances in their squared forms. The model given below is followed by the description of 

the notation used.

Maximize

( ) ( ) 21−⋅

+

∑
>∈

nn

F

F
SUN:TS,T

ST

( 5-1 )

Subject to

ST
FF ≤ ∀S,T ∈ UN: T>S

( 5-2 )

ijijST
uC ≤ ∀(i,j) ∈ E , ∀(S,T) ∈ UN: T>S

( 5-3 )
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5.2 Notation

xi is the x-coordinate of node i

yi is the y-coordinate of node i

F is the flow value between the user pair that has the lowest maximum flow 

value among all pairs

FST is the flow value of the virtual commodity ST from source node S to target

node T

N is the set of nodes

n is the number of nodes

CijST is the flow value of virtual commodity ST through the link ij

x

ij
d is the absolute difference between the x coordinates of nodes i and j

y

ij
d is the absolute difference between the y coordinates of nodes i and j

dx

p
ex

a is the constant factor of the pex

th

 segment of the piecewise approximation 

curve for (
x

ij
d )

2

dx

p
ex

b is the rate factor of the pex

th

 segment of the piecewise approximation curve 

for (
x

ij
d )

2

dy

p
ey

a is the constant factor of the pey

th

 segment of the piecewise approximation 

curve for (
y

ij
d )

2

dy

p
ey

b is the rate factor of the pey

th

 segment of piecewise approximation curve for 

(
y

ij
d )

2
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Dij is the approximated value of the link (i,j)’s distance squared

dx

p
dx

L is the boundary of the pdx

th

 segment of the piecewise approximation curve 

for (
x

ij
d )

2

, in terms of (
x

ij
d )

dy

p
dy

L is the boundary of the pdy

th

 segment of the piecewise approximation curve 

for (
y

ij
d )

2

, in terms of (
y

ij
d )

Pd is the number of line segments used for approximating the link distances 

between the agent nodes and other nodes that are within their transmission 

range, or may become by agent relocation within velocity constraints

u

p
u

a is the constant factor of the pu

th

 segment of the piecewise approximation 

curve for the link data rate

u

p
u

b is the rate factor of the pu

th

 segment of the piecewise approximation curve 

for the wireless link data rate

u

p
u

L is the boundary of the pu

th

 segment of the piecewise approximation curve 

for the wireless link data rate u, in terms of Dij

Pu is the number of line segments used to approximate the wireless link data 

rate curve

x

j
v is the travel amount of mobile agent j in the x-direction

y

j
v is the travel amount of agent j in the y-direction

vx

p
vx

a is the constant factor of the pvx

th

 segment of the piecewise approximation 

curve for (
x

j
v )

2
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vx

p
vx

b is the rate factor of the pvx

th

 segment of the piecewise approximation curve 

for (
x

j
v )

2

vy

p
vy

a is the constant factor of the pvy

th

 segment of the piecewise approximation 

curve for (
y

j
v )

2

vy

p
vy

b is the rate factor of the pey

th

 segment of piecewise approximation curve for 

(
y

j
v )

2

vmaxj is the maximum velocity for agent j

vx

p
vx

L is the boundary of the pvx

th

 segment of the piecewise approximation curve 

for (
x

j
v )

2

, in terms of (
x

j
v )

vy

p
vy

L is the boundary of the pvy

th

 segment of the piecewise approximation curve 

for (
y

j
v )

2

, in terms of (
y

j
v )

Pv is the number of line segments used to approximate the magnitude of the 

agent velocity squared

Decision variables

xlj is the x-coordinate of the relocated agent node j

ylj is the y-coordinate of the relocated agent node j

As seen in Figure 5-1, the calculation of the linear coefficients a and b for a 

piecewise linearization procedure is fairly straightforward, given that the number of line 

segments P, and the variable limits L
x

p, p ∈ [1,2,..,P-1] are known. This figure is 
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presented for demonstration purposes only for f(x) = x
2

, x ∈ [0, 2] and P = 3. The dashed 

line segments represent the linear curves that are used to constrain the decision variable 

that is approximated to x
2

 given x. The slope for the (P+1)
th

segment is assumed to be 

infinity. The AMPL modeling language which is used to model the linear approximate 

problem has a built-in function to automatically approximate non-linear functions. In this 

study this functionality is used, information on which can be found in the AMPL user’s 

manual [74].

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

a

1

 + b

1

x

Lim

x

1

a

2

 + b

2

x

Lim

x

2

a

3

 + b

3

x

Lim

x

3

x

f
(
x
)
 
=

 
x

2

Figure 5-1 The piecewise linear approximation of f(x) = x
2

. An example is plotted for x ∈

[0, 2], P = 3
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The AMPL model file, run file and an example data file can be found in 

Appendices Ap- 4, Ap- 5, Ap- 6 on pages 189 through 195. The descriptions of the 

constraints of the above model are as follows:

The constraint given in equation ( 5-2 ) bounds the all-pair minimum flow decision 

variable by all flows between any node pair.

The constraints given in equation ( 5-3 ) limit any virtual commodity’s flow on a 

particular link by the link capacity. The flow of different virtual commodities are 

exclusive and do not take up each others flow resources.

The constraints given in ( 5-4 ) maintain the flow equalities separately for every 

virtual commodity flow.

The constraints given in ( 5-5 ) and ( 5-6 ) set the link distances in the x and y

directions, respectively, to the relevant decision variables by imposing a lower bound. A 

lower bound is necessary because for larger link capacities, the link distance variables 

would tend to become smaller.

The constraints given in ( 5-7 ) bound the decision variable used to approximate the 

square of the link distances by the corresponding piecewise linear curve.

The constraints given in ( 5-8 ) bound the decision variable used to approximate the 

link flow capacities by the piecewise linear Dij versus uij curve.

The constraints given in ( 5-9 ) maintain the equality in the link flow capacities in 

the inverse directions.



www.manaraa.com

86

The constraints given in ( 5-10 ) and ( 5-11 ) set the mobile agent travel distances in 

the x and y directions, respectively, to the relevant decision variables by imposing a lower 

bound.

The constraints given in ( 5-12 ) are used to approximate the square of the distance 

traveled to the corresponding piecewise linear curve.

The mixed integer approximate linear model for mobile agent location optimization 

is a complex model, with the solver being able to return solutions for problems up to 

medium size in reasonable time. It is used for verification of the heuristics and 

comparisons on small scale problems. The performance of the mixed integer model, even 

for small test problems, is far below the two heuristics developed in this study. The 

results of the MIP model and comparisons with the NDBGA and PSO heuristics can be 

found in Section 7.4.

One reason for the poor performance of the mixed integer model is the lack of 

flexibility, especially in defining the objective function. The heuristics are designed to 

favor solutions with total connectivity in any situation, or utilize the non-zero minimum 

flow if this is not possible. The first term in the objective function given in ( 5-1 ) is zero 

when the network is not fully connected. This is sometimes not preventable for sparse 

networks. The heuristics, however still consider the non zero minimum flow within the 

network and continue with the optimization accordingly.

Additionally, the mixed integer program solutions had to be limited with a 10% 

optimality gap in order to return solutions in practical time (although still slower than the 
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two heuristics). The model, however, proves how complex and hard to solve a problem 

this is and provides a reasonable basis for algorithm comparison.
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CHAPTER 6

6. THE MOBILE AGENT LOCATION OPTIMIZATION SYSTEM AND 

THE SIMULATION ENVIRONMENT

In the field where the MANET is active, the locations of the mobile agents

determine the links between them and any other node on the network. This affects the 

link capacities and therefore the maximum possible data flow rates between the user 

nodes, which is an important consideration when maximizing the network performance.

An optimization engine needs two decision variables per mobile agent- its direction 

of motion and its magnitude of motion- and an objective function as defined in equation

( 3-7 ) that can be calculated when the node coordinates are known. Both the NDBGA 

and PSO are population based heuristic optimization tools. Their general working 

principle for mobile agent location optimization is given in Figure 6-1 as a Pseudo code.

In Figure 6-1, the variables marked with * show the best values returned by the 

optimizer. The implementation details of the NDBGA and the PSO algorithms are 

described in Section 6.2 and 6.3, respectively.



www.manaraa.com

89

Start{

Initialize t = to

Do{

Read XYt

Optimize with NDBGA or PSO rit and vit using XYt , find rit

*

 and 

vit

*

Update (xi(t+1),yi(t+1)) using rit

*

 and vit

*

∀i∈ANt

Deploy mobile agents to (xi(t+1),yi(t+1)) ∀i∈ANt

Set t = t + 1

}While (User nodes are active)

}End

Figure 6-1 The pseudo code for the mobile agent location optimizer

A MANET can perform in a stationary situation as well as in a dynamic one. 

Therefore, a second type of problem exists which involves locating the mobile agents to 

optimize the connectivity and performance of static users.

6.1.1 Dynamic Scenarios

The problems in this group are multiple time step problems with varying user 

locations in each time step, as mainly considered in this study. Mobile agents are bound 

with a velocity constraints which limit their movement each time step.
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6.1.2 Static Scenarios

There are times that a MANET might need to be set up in a stationary fashion. Such 

applications can be seen in sensor networks, or at temporary establishments such as 

military or disaster emergency camps, short-term housings, etc.

Modifying the mobile agent optimizer algorithm for the static case is fairly simple. 

These can be regarded as single time step problems where agents are not bound with 

velocity limits. The objective is to locate the agents such that the connectivity and 

network performance among the stationary users are maximized.

6.2 The NDBGA for Mobile Agent Location Optimization

The general structure and parametric settings of the NDBGA algorithm for the 

mobile agent location problems are as follows:

Due to the inherent characteristics of the static and the dynamic problems, two 

different NDBGA generation strategies are followed. For the static type, a generational 

strategy is adopted. A generational strategy means that the child population size is equal 

to the population size, and the children replaces all parent population members except the 

best two of the parent population, following an elitist strategy.

For the dynamic type of problems, a steady state strategy is used, in which 20% of

the population members are selected, following a tournament selection strategy, as 

couples and the child population replaces the worst 20% of the parent population. The 

steady state strategy is implemented for the dynamic problems because the search space

is relatively small when compared to the static problems and a continuous incremental 
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optimization is performed. The detailed pseudo code of the NDBGA for mobile agent 

location optimization is as follows:

Start{

Initialize t = to

Read XYt

BestSoFar = -M

Set rit and vit for each agent i as decision variables, encoded by l binary digits each.

Do{

Initialize population for ( each population member ){

for ( each rit variable ) lbvar = rlb = 0

for ( each vit variable ) lbvar = vlb = 0

if ( t to AND mbr = 1) then {

Transfer population best from time (t-1)

}else{

Initialize population randomly by assigning each gene a binary 

digit randomly with equal chances for 0 and 1.

}

}

Evaluate fitness for ( each population member ){

Decode for ( each rit variable var){

temp

lb
var

 = lbvar + N(0,Khvar)

rit = 

( ) ( )
temp

l

lb

lb

cdecimalr

var

var

12

2

+

−

⋅−π

}

Decode for ( each vit variable var){

temp

lb
var

 = lbvar + N(0,Khvar)



www.manaraa.com

92

vit = 

( ) ( )
temp

l

lbi

lb

cdecimalvv

var

varmax

12

+

−

⋅−

}

Calculate the xi(t+1) and yi(t+1) coordinates suggested by the solution at (t+1) 

for every agent i using decoded rit and vit values as given in equations         

( 3-10 ) and ( 3-11 ).

Form MANET topology, Gt+1, and calculate link capacities.

Calculate objective:

Set fitness F = MANET performance metric (Equation ( 3-7 ) )

if ( Member fitness is better than BestSoFar ) then {

Update BestSoFar as the member and its solution for 

Update lbvar for each variable with 
temp

lb
var

 of the BestSoFar solution

}

}

Loop{

for ( ncouple couples){

Repeat for 2 parents: P1, P2{

Randomly pick q individuals from the population

Assign the one with best fitness as a parent

}

Crossover parents to create two offspring with probability pc{

DO with equal probabilities{

{Uniform crossover: Offspring get each chromosome from 

either of the parents, P1 and P2, with equal probabilities.}

OR

{Singlepoint crossover:Offspring get a random length 

sequence of genes from one parent, and the corresponding 

rest from the other. The reverse is applied to create the 

second offspring.}

}
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if (No crossover) then {

Transfer P1 and P2 to offspring population without crossover.

}

Mutate (bit flip) each offspring gene with probability bm

}

Evaluate fitness for (each offspring member)

Replace worst λreplace population members with best λreplace offspring

}While 
(Loop)

 (stopping criteria is not met)

Update (xi(t+1),yi(t+1)) ∀i∈ANt using BestSoFar solution

Deploy mobile agents to (xi(t+1),yi(t+1)) ∀i∈ANt

Set t = t + 1

}While 
(Do)

 (User nodes are active)

}End

The NDBGA takes two decision variables per agent, the direction and the 

magnitude of its velocity, binary encoded using 12 bits per variable. Every individual in 

the population represents one possible movement scenario for the mobile agent nodes. 

The fitness evaluation involves generating the network that corresponds to the movement 

scenario, find the link capacities and calculate the objective function, as described in the 

“Evaluate fitness” routine in the above pseudo code. This is followed by parent selection 

using tournament selection, crossover and mutation to create offspring, evaluation of the 

offspring fitness and replacement of the parent population accordingly. This loop 

continues until the stopping criteria is met, which is described in Section 6.4.
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The genetic algorithm specific parameters such as population size (µ), tournament 

size (q), bit mutation rate (bm) and crossover rate (pc) are determined by factorial 

experimentation as described in Section 6.2.1.

6.2.1 Tuning the NDBGA parameters

Like every other heuristic, a GA’s performance depends to some degree eon its 

parameter settings. As Wolpert and Macready [90] state in their study, known as the “no 

free lunch” theorem, different search algorithms over the global problem space are 

indistinguishable, but might return superior solutions on some group of problems. In 

other words, it is shown that no single algorithm is perfect for comprehensive problem 

space.

Algorithms tailored for a specific group of problems are expected to perform better 

than others on that problem type. The behavior of an algorithm on any problem changes

when the values of its certain parameters change. In NDBGA, population size, 

tournament size, mutation rate and crossover rate are the general GA parameters that are 

commonly tested among different problem types, and the value of the non-deterministic 

decoding error, K, is an additional parameter that has a potential effect on algorithm 

performance.

In order to investigate the significance of the NDBGA parameters on the mobile 

agent location optimization algorithm, a factorial experimentation is carried out. 

Parameters such as population size, tournament size, bit mutation rate, crossover rate and 

the decoding error K are tested with the following factor levels:
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Population size (µ): four levels at 30 60 90 120

Tournament size (q): four levels at 2 3 4 5

Bit mutation rate (bm): four levels at 0.02 0.03 0.04 0.05

Crossover rate (pc): two levels at 0.70 0.90

K two levels at 0.05 0.20

These levels are selected per preliminary experimentation results and common 

practice among GA researchers [31, 44, 65]. The tests for the above factor levels are done 

on 5 stationary test problems with 7 users and 5 agents, with 5 replications per problem

using different random seeds for a total of 25 runs per factor level combination (FLC),

resulting in a total of 6400 runs. All runs are conducted with the same stopping criteria: If 

the best solution is not improved in 1000 consecutive objective function evaluations, the 

algorithm stops and returns the best solution found.

The three performance measures that are considered, in order of importance are:

1) The average percent of user nodes that one user node can communicate with, 

(P1) (%).

2) All-pair minimum bandwidth, (P2) (Mbps).

3) Total bandwidth, (P3) (Mbps).
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Calculation of the above performance measures are shown in detail in Section 7.3, 

in equations ( 7-6 ), ( 7-7 ) and ( 7-8 ), respectively.

The results of the experiments are analyzed with Minitab software, and the analysis 

of variance (ANOVA) indicated that the factors, other than K, have a significant effect on 

the performance metrics. The pc however only has a significant effect on the all-pair 

minimum bandwidth. Table 6-1 summarizes the ANOVA results.

Table 6-1 ANOVA analysis for NDBGA parameters

Factor DF Metric SS MS F P

P
1

12187 4062 16.76 0.000

P
2

9805 3268.4 67.05 0.000µ 3

P
3

1401707 467236 179.31 0.000

P
1

1796 599 2.47 0.060

P
2

11576.7 3858.9 79.16 0.000q 3

P
3

2048604 682868 262.06 0.000

P
1

20205 6735 27.79 0.000

P
2

19166.7 6388.9 131.06 0.000b
m

3

P
3

3441697 1147232 440.26 0.000

P
1

3 3 0.01 0.915

P
2

241.8 241.8 4.96 0.026p
c

1

P
3

24343 24343 9.34 0.002

P
1

120 120 0.49 0.482

P
2

36.4 36.4 0.75 0.388K 1

P
3

665 665 0.26 0.613

P
1

1204605 301151 1242.61 0.000

P
2

65963.3 16490.8 338.30 0.000

Problem 

Instance

4

P
3

37736641 9434160 3620.46 0.000

P
1

1547188 242

P
2

311199.1 48.7Error 6384

P
3

16635388 2606

P
1

2786104

P
2

417989.3Total 6399

P
3

61289046
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Selecting a parameter level combination with three performance measures requires 

a decision making process since this is a multi-objective criteria. A factor level 

combination only dominates another one if it performs better in terms of all objectives. 

The analysis of the above FLC revealed 34 non-dominated options. The non-dominated 

factor level combination set is then sorted with respect to the performance metric P1, and 

the one with the following settings is selected as the NDBGA parameter set due to its 

satisfactory performance with respect to P2 and P3 while being among the top with 

respect to P1.

Population size (µ): 90

Tournament size (q): 3

Bit mutation rate (bm): 0.03

Crossover rate (pc): 0.70

K 0.05

6.3 The PSO for Mobile Agent Location Optimization

Due to PSO’s advantages discussed in Section 2.8.2, it is selected to be an 

alternative tool for the mobile agent location optimization problem. Since the PSO is 

proven to be an effective tool for continuous optimization, it provides a good comparison 

opportunity for the NDBGA. The benefits and disadvantages of using PSO over NDBGA 

or vice versa are discussed in Section 7.3.
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The pseudo code of the PSO implementation for mobile agent location 

optimization:

Start{

Initialize t = to

Read XYt

G = -M

P = -M for all particles

Set rit and vit for each agent i as decision variables, each encoded as a real number.

Do{

Initialize swarm particles’ X, V for ( each swarm particle ){

if ( t to AND mbr = 1) then {

Transfer best particle’s X, P from time (t-1)

}else{

for ( each rit variable ) X ← U(0,2π)

for ( each vit variable ) X ← U(0,
i

v
max

)

}

for ( each rit variable ) Vmax = 2π, V ← U(-2π,2π)

for ( each vit variable ) Vmax = vmax, V ← U(
i

v
max

,
i

v
max

)

}

Evaluate fitness for ( each swarm particle ){

Calculate the xi(t+1) and yi(t+1) coordinates suggested by the solution at (t+1) 

for every agent i using decoded rit and vit values as given in equations (

3-10 ) and ( 3-11 ).

Form MANET topology, Gt+1, and calculate link capacities.

Calculate objective:

Set fitness F = MANET performance metric (Equation ( 3-7 ) )

if ( F is better than particle’s P ) then {
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Set P = F

}

if ( P is better than G ) then {

Set G = P

}

}

Set ω = 1.5

Loop{

for ( each swarm particle ){

if (U(0,1) < 0.02) then {

Set ω = 1.5

}

Set R1 = U(0,1)

Set R2 = U(0,1)

Set 
2211

RR ϕϕϕ +=

Set 











>

−+−=

otherwise1

4for 

42

2

2

ϕ

ϕϕϕK

Set ( ) ( )[ ]XGRXPRVKV −⋅+−⋅+⋅⋅=
2211

ϕϕω

Scale V down, if any of its elements is beyond the corresponding 

Vmax limit, by 

( )












∀ varmax

var

var

max
V

V

.

Set X = X + V

}

Evaluate fitness for ( each swarm particle )

}While 
(Loop)

 (stopping criteria is not met)

Update (xi(t+1),yi(t+1)) ∀i∈ANt using G
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Deploy mobile agents to (xi(t+1),yi(t+1)) ∀i∈ANt

Set t = t + 1

}While 
(Do)

 (User nodes are active)

}End

The PSO for mobile agent location optimization takes two decision variables per 

agent, the direction and the magnitude of its velocity. Every particle in the swarm 

represents one possible movement scenario for the mobile agent nodes. The fitness 

evaluation involves generating the network that corresponds to the movement scenario, 

finding the link capacities and calculating the objective function, as described in the 

“Evaluate fitness” routine in the above pseudo code. This is followed by updating the P, 

G, and the V vectors, and finally the X vector for each particle. This loop continues until 

the stopping criteria is met, which is described in Section 6.4.

6.3.1 PSO Parameters

As discussed in Section 2.8.2.2, the PSO performance is enhanced by the 

introduction of the constriction coefficient, and setting the social and cognition

parameters such that they sum up to a number larger than 4. The common practice is to 

set them to 2.05 each, which has been done in this study also [17]. Additionally, a

dynamic weight inertia strategy is applied with an initial ωo value of 1.5, and decreased 

geometrically by a coefficient of 0.98 at every iteration. Although the common practice is 

to let the inertia coefficient decrease monotonically, in preliminary experimentation it 

was found beneficial to randomly reset it back to its high level. This improves the ability 
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to escape local optima by “exciting” the particles every now and then, helping them 

swarm to other regions. The inertia coefficient is reset to its original value of 1.5, with a 

probability of 0.02, at each iteration.

The swarm particle velocities are limited to the variable limits, which is also a 

common practice. One important thing that needs to be noted on limiting the velocities is 

that the swarm particle velocity vector is scaled down entirely. That is, all of its elements 

are scaled down rather than only the ones that exceed the limit. The scale factor is 

calculated using the velocity element that has the largest deviation from the maximum 

allowed velocity limit.

The global neighborhood was found to be the most efficient over a wide variety of 

continuous test problems as suggested by Carlisle and Dozier [19]. A global 

neighborhood topology is used for the PSO in this study. For all comparisons, the PSO 

and the NDBGA population sizes are kept equal. 

6.4 Stopping Criteria

Since the heuristic optimization algorithms are expected to return a “good solution” 

which usually cannot be tested for optimality, there is one or more stopping criteria used. 

In this study, a strategy is used which records the function evaluation count every time 

there is an improvement on the best known solution. If no improvements are detected 

within a preset number of consecutive function evaluations, the algorithm stops and 

returns the best found solution so far.
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The mobile agent location optimizer is designed for two types of scenarios, static 

and dynamic, which are explained in detail in Section 6. Here, the importance of their 

differences in terms of the stopping criteria is discussed.

The static problems and the dynamic problems are almost identical except for the 

problem complexity. The static problems have a significantly larger search space due to 

the larger velocity constraints of the mobile agents. On the other hand, the dynamic 

problems are made up of many static problems that have agents with infinitesimal 

velocity constraints. 

This property brings an advantage when solving individual time steps of the 

dynamic problems because the stopping criteria requirements can be lowered drastically 

without a significant loss of performance. According to preliminary experiments, the 

sufficient stopping criteria are found as follows: For the static problems, both the 

NDBGA and the PSO algorithms stop and return a solution if the number of objective 

function evaluations without an improvement of the best solution found so far is 1000

and for dynamic problems, the requirement for each time step is set equal to 200.

6.5 Semi-intelligent Agent Behavior

The heuristic mobile agent location optimizer requires the agents to be an integral 

part of the MANET in order to calculate the objective function. If, for some reason, an 

agent falls back, or becomes disconnected from the network, it has to be able to move 

independently and catch up with the MANET to be properly utilized again.
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To achieve this, a simple method is developed. Every mobile agent keeps track of 

the coordinates of the users it can communicate with, including multi-hop 

communications. The center point of the coordinates of these users is treated as an 

attractive target to move towards in case an agent becomes isolated. The last recorded 

velocity of the target location, which is the difference between the target at time t and 

time t-1, is also preserved in order to be able to predict the change in the target location 

while the agent is isolated.

An agent that cannot communicate with any user node, or an agent that has a node 

degree of 1 or 0 (nd < 2), it is considered an isolated agent. If an agent becomes isolated, 

then it will self deploy towards the last recorded target coordinate until it catches up with 

the network, becomes a node with nd ≥ 2 and it is able to communicate with at least one 

user node.
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The pseudo code for the semi-intelligent agent behavior is as follows:

For any agent j{

If( t = to ) then { )0,0(=
T

jt
XY  }

At any time t{

If(
j

t
UN > 1 ) then {

)(
j

t

T

jt
UNCXY =

}else{

If( t > 2 ) then {

T

tj

T

tj

T

jt
XYXYXY

)2()1(
2

−−
−⋅=

}else{

),(
jtjt

T

jt
yxXY =

}

}

If( d(j) ≤ 1 OR 
j

t
UN ≤ 1 ) then {

Self deploy agent j to 
T

jt
XY

}else{

Obey mobile agent location optimizer system

}

}

}

Where 
T

jt
XY is the calculated target coordinate for self deployment of agent j at time 

t, 
j

t
UN is the set of user nodes that agent j can communicate with (not necessarily within 
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the immediate range), )(
j

t
UNC  is the coordinate center of all users in 

j

t
UN , ),(

jtjt
yx  is 

the position of agent j at time t, and d(j) is the node degree of agent j.

In this chapter, the two different problem scenarios for the mobile agent location 

optimization problem, static and dynamic, are described. The details of the NDBGA and 

the PSO algorithms are given. The determination of the NDBGA algorithm parameters is 

done by a full factorial experiment and a multi-criteria decision is made by taking a very 

high performing parameter combination.

The dynamic mobile agent location optimization can be enhanced by making use of 

future user location prediction and information gained during past time steps. These are 

explained in sections 7.3.2 and 7.3.3 in the next chapter.
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CHAPTER 7

7. TEST PROBLEMS AND RESULTS

The performance analyses of this study are done in a computerized simulation 

environment. Test problems of static and dynamic natures are generated and the 

performance of the developed algorithms are analyzed using computer simulation. Test 

problems for the dynamic cases are generated in three groups based on problem size: 

small, medium and large. Small sized problems employ 4 users and 3 agents, medium 

sized problems employ 8 users and 6 agents, and large size problems employ 16 users 

with 12 agents. The dynamic test problems are generated with a span of 100 time steps.

All test problems are generated and the computer simulations are carried out using 

the MATLAB technical computing package. To achieve better computational 

performance, all heuristic optimization computations are coded in C++ and embedded 

into the simulation platform within MATLAB. The MIP model was constructed using the 

AMPL modeling language and solved with CPLEX version 9.1, which is also embedded 

in the MATLAB simulation platform.



www.manaraa.com

107

7.1 Generation of the Static Test Problems

Test problem data involve the locations of the users as well as the initial coordinates 

of the mobile agents. The mobile agent location optimizer system then deploys the agents 

within the simulation area. The test problem instance generation code and the test 

problem parameters necessary to create the test problems are given in Appendix Ap- 2

and Ap- 3, pages 185-188.

7.2 Generation of the Dynamic Test Problems

Test problem data specify the starting locations of the users and the agents, 

followed by all future users’ locations in discrete time steps. Naturally, the mobile agent 

location optimizer system is only given the user location data of the current time step.

The simulation dimensions are set so that the wireless transmission ranges of all 

MANET nodes are 1.0 distance unit. Velocity constraint vmax for user nodes is 0.05 and 

vmin for user nodes is 0.02. User nodes come to a stop when they reach their destinations.

Velocity constraint vmax for mobile agents is 0.06 and vmin for mobile agents is 0.0. The 

velocity values indicate Euclidean distance units traveled per one time increment. The 

simulation area is a two dimensional rectangular area with Xmin = 0, Xmax = 5, Ymin = 0. 

Ymax = 5. Test problem instance generation code and the parameters necessary to create 

the test problems are given in Appendix Ap- 2 and Ap- 3, pages 185-188.
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7.2.1 User Mobility Model

User nodes are assigned random destination points and they follow a random path 

with random perturbations to their directions. Each user is assigned a random velocity 

U[vmin, vmax] at each time step. Let uvjt be the unit vector in the direction of the motion of 

the j
th

 user node at time t, and uvdestinjt be the unit vector in the direction of its final 

destination point from its location at time t, as given in equation ( 7-1 ). The initial 

direction of user motion, i.e. 
0

jt
uv , is created randomly for all users.

( ) ( )

( ) ( )
jtjtjdestinjdestin

jtjtjdestinjdestin

jt

yxyx

yxyx

uvdestin

,,

,,

−

−

=

→

( 7-1 )

The direction angle of each user node, uvjt, is perturbed by a uniformly distributed 

random number between [-π/4 , π/4] with a 10% probability in each time step before 

calculating its direction of motion for the next time step, uvj(t+1). The random rotation 

procedure is given in equations ( 7-2 ) through ( 7-5 ).

)4/,4/( ππθ −= U

( 7-2 )

( ) ( )

( ) ( )












−

=

θθ

θθ

cossin

sincos

RotMatrix

( 7-3 )

RotMatrixuvuv
jtjt

×=
*

( 7-4 )
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where θ is the random rotation in the direction of the motion, RotMatrix is the 

corresponding rotation matrix and 
*

jt
uv  is the perturbed unit vector in the direction of 

motion of the j
th

 user at time t.

The directions of user nodes are calculated for each successive time step as shown 

in equation ( 7-5 ).

uvj(t+1) = (α)·uvjt + (1−α)·uvdestinjt

( 7-5 )

where α = 0.95 is the weight factor for the current motion direction, uvj(t+1) is the unit 

direction vector of the simulated motion of the j
th

 user in the next time step, uvcurrentjt is 

the current direction vector, and uvdestinjt is the direction towards the destination of the 

j
th

 user from its current location.

This mobility model is similar to the random waypoint model, but different in the 

sense that the user nodes try to reach a certain destination. The simulated motion 

resembles the case as if the users are searching for their destination or making their way 

around forbidden areas or obstacles, which is a reasonable representation of a search and 

rescue or a military operation. Other mobility models could be readily used since the 

motion strategy is not an input.

7.3 Performance Metrics and Use of Dynamic Information

This section is organized as follows; first, analyses are presented on future location 

prediction and the usage of the best solution from the previous time step in Section 7.3.1. 
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Then, comparisons of the NDBGA and PSO heuristics and CPLEX as the MIP solver are 

made on static and dynamic test problem cases in Section 7.4.

The performance criteria that the comparisons are based on are the three metrics 

given in Section 6.2.1 and, in the order of importance, they are:

1) The average percent of  other users that one user can communicate with, P1 (%), 

given in equation ( 7-6 ).

( )

100

1
1

:,

1
⋅





















−⋅

=

∑

∑

=

≠∈

f

t

t uu

ijUNji

ijt

t

nn

z

P

f

( 7-6 )

where,

tf is the final time step in the problem simulation. For static problems, tf = 1.

t

thth

ijt
UNji

tji

z ∈∀







= ,

otherwise0

,at timeuser  theandebetween thpath ais thereif1

2) The average all-pair minimum bandwidth, P2 (Mbps), given in equation ( 7-7 ).

( ) ( ){ }

f

t

t

tt

ijUNi,j

t

jiGMaxFlowjiGMaxFlow

P

f

t

∑
=

>∈

>

=
1

:

2

0,,:,,min

( 7-7 )
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3) The average total bandwidth, P3 (Mbps), given in equation ( 7-8 ).

( )

f

t

t ijUNji

t

t

jiGMaxFlow

P

f

∑ ∑
= >∈

















=

1 :,

3

,,

( 7-8 )

The performance measures given in equations ( 7-6 ) through ( 7-8 ) are indicators 

of algorithm performance over the entire simulation time span. P1 is the average percent 

user connectivity metric, in which it is possible to weight to give more or less importance 

to users’ connectivity properties. For dynamic problems, the P1, P2 and P3 metrics reflect 

the average performances over the entire time span, which form the basis of algorithm 

performance comparisons for dynamic problems.

All of the above listed performance measures are “the higher the better” type of 

performance measures. A fourth performance measure, the time for the optimizers to 

return a solution, is also recorded.

7.3.1 Dynamic Problem Analyses

The dynamic have unique characteristics that, if made use of, enable some 

additional inputs to the optimizer to enhance performance. This performance increase is 

realized in both the solution found and in the solution time.

The two additional inputs used are the future predicted locations of MANET users

and the transfer of the best solution at time t to time t+1 during the initialization of the 
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population at time t+1. The results of these two analyses are given in Sections 7.3.2 and 

7.3.3.

7.3.2 The Effect of Future Location Prediction

The optimization of the mobile agents in the MANET is done according to the user 

location data. At each time step, the user locations are collected, and the optimum agent 

locations are determined. As the agents relocate to their calculated locations, users also 

move to their next coordinates, which are used at the next time step.

Optimizing agent locations using current user coordinates can be seen in a sense as 

the agents following the users’ movements on the field. This actually can be aided by

forecasting the coordinates of the users at a specific prediction horizon by using the past 

location information, as described in Section 3.4, and supplying this information to the 

agent location optimizer instead of the current user location data.

To test for the effect of using predicted user location in mobile agent location 

optimization, prediction horizons (H) of 1, 2, 3, 4, 5, 6, 7 and 8 time steps are analyzed 

on 5 medium size test problems, with 5 replications per problem with different random 

seeds for the heuristic algorithm, for a total of 200 runs.

The location prediction did not have any adverse effects on the average percent of 

users that could communicate. Furthermore, the results show that a horizon of H = 4 is an 

optimal setting which not only helps increase the average total and the minimum 

bandwidth of the MANET but also decrease the average time it takes to return the 

solutions. Figure 7-1 and Figure 7-2 show the average total and minimum bandwidth of 
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all runs at corresponding H levels. Figure 7-3 shows the average time it takes to solve a 

50 time step problem with corresponding levels of H.
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Figure 7-1 Prediction horizon H versus the average minimum bandwidth
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Figure 7-2 Prediction horizon H versus the average total bandwidth
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Figure 7-3 Prediction horizon H versus the average total solution time

In Figure 7-3, it seems as if there is an improvement in the solution time as H 

increases. Interpreting this as an improvement would be misleading. It is true that 

solutions are returned more quickly, but this is because the algorithm cannot improve its

best solution. This best solution is inferior to the best solution with smaller prediction 

horizons.

7.3.2.1 Time Varying Effects

In this part, the effect of future location prediction on the performance metrics at 

each time step is analyzed for an example problem. Figure 7-4 and Figure 7-5 show the 

change in performance metrics over time for cases with no location prediction (H=0), 

with prediction of 4 time steps into the future (H=4) and with prediction of 8 time steps 

into the future (H=8).
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Figure 7-4 Change of (a) % user connectivity (b) all pair minimum bandwidth with

simulation time
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Figure 7-5 Change of total bandwidth with simulation time

Figure 7-6 shows the actual optimized locations of mobile agents for the example 

problem with different prediction horizons. Three different optimizations are overlaid in 

the figures. Diamond shape represent user nodes while ∆, ο and + represent agents 

optimized with H=0, H=4 and H=8, respectively.
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Figure 7-6 Mobile agent behavior with location prediction
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7.3.3 The Effect of Using the Best Solutions From the Previous Time Step

Dynamic mobile agent location optimization inherently models a continuous time-

space relationship. If the best solution vector from the previous time step (t-1) is fed into 

the new population when solving for the agent velocity vectors of time t, it is expected to 

speed up the search process because the best velocities of time t are likely to be correlated 

with the best mobile velocities of time t-1.

The effect of feeding the last time step’s best solutions into the new population is 

investigated on 5 medium scale test problems with 5 replications per problem. 

Transferring the only the best solution, top 5 solutions, best half (45) and the entire 

population (90) is tested for each instance for a total of 125 runs. The results show that 

the inclusion of the best solutions -no matter how many- from the previous time step has

only a minor effect, if any, on the performance measures but a significant reduction, 

about 30-40%, on the solution time. Figure 7-8, Figure 7-9, and Figure 7-10 show the 

effects on the three performance measures and the solution time as boxplots.
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Figure 7-7 The effect of feeding the best solutions from (t-1) to t on average % user 

connectivity
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Figure 7-8 The effect of feeding the best solutions from (t-1) to t on average minimum 

bandwidth between the MANET user pairs
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Figure 7-9 The effect of feeding the best solution from (t-1) to t on average total 

bandwidth between the MANET user pairs
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time
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7.3.3.1 Time Varying Effects

In this part, the effect of transferring the population best is investigated at each time 

step for an example problem. Figure 7-11, Figure 7-12 and Figure 7-13 show the change 

in performance metrics over simulation time and solution times for cases with no transfer 

and with transfer of the population best.
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Figure 7-11 Change of (a) % user connectivity (b) all pair minimum bandwidth with 

simulation time
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Figure 7-12 Change of total bandwidth with simulation time
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Figure 7-13 Solution time for each time step

As a conclusion, it can be stated that the transfer of the information of the best 

solution from t-1, which is actually the current velocity direction and magnitudes of the 
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mobile agents, improves the solution time significantly. When the effects of transferring 

the best solution, the top 5, best half or the entire population are analyzed with paired-t 

tests, the effects of transferring any more than one solution are not statistically 

significant. Therefore, in order to keep any possible bias to a minimum, transfer of only

the population best is set as the default for the rest of this study.

Another result that can be drawn when the effects of future user location prediction 

and population best transfer are analyzed is as follows: The prediction provides 

estimation of unknown information and therefore it helps improve solution quality. 

Transfer of the previous best solution provides memory to maintain previously gained 

knowledge and it helps speed up reaching a high quality solution in the future time step,

which is very important for real time applications.

7.4 Algorithm Performances

In this section, the performances of the NDBGA, the PSO and the CPLEX solvers 

are compared on various sizes of static and dynamic problems. The boxplot figures are 

produced with Minitab and a typical boxplot is given in Figure 7-14.
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Figure 7-14 Boxplot figure description

7.4.1 Comparisons on Static Scenarios

The algorithms’ performance are analyzed and compared with respect to the three 

measures defined in Section 7.3. The heuristic algorithms are run for 5 replications per 

problem.

The analyses are grouped into three problem categories; small, medium and large, 

depending on the number of nodes. The results and comparisons of the algorithm 

performance are presented as boxplots of all the performance data from all problem 

instances of same type and size, followed by the graph of the best, average and the worst 

performances over replications for each problem instance. The problem instances are 

generated randomly, with the code and random seed data provided in appendices Ap- 2

and Ap- 3. Static users are assigned x and y coordinates drawn from a uniform 
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distribution U(0,XYmax), where XYmax = 5 units, representing a 5 by 5 square simulation 

area.

7.4.1.1 Small Static Problems

The comparisons on small scale problems are done on 20 instances with 6 users and 

4 agents. Problem instances are generated as explained in Section 7.4.1. An example 

problem and its solution is given in Figure 7-15. In the figure, the diamond shaped nodes 

represent user nodes and the solid round shaped nodes represent the agent nodes.
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Figure 7-15 An example problem (a) and its solution (b) for a small static scenario

When the average connectivity results are analyzed, as seen in Figure 7-16, the 

NDBGA based mobile agent location optimizer performed the best in terms of the 

average % of user connectivity. NDBGA is followed by the PSO with approximately 9% 
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gap. The CPLEX’s performance is much poorer with nearly 50% gap when compared to 

the NDBGA.
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Figure 7-16 The performance of the GA and the PSO algorithms on small scale static test 

problems in terms of the % user connectivity. (a) Boxplot (b) Best, average and worst 

performances over all problem instances
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In terms of the minimum bandwidth between all user pairs, CPLEX seemingly has 

done a better job than the heuristics as presented in Figure 7-17, but given its much 

poorer performance on the most important first criteria, the improvement in the average 

minimum bandwidth is not a real benefit. The NDBGA lead over the PSO is still valid in 

this criteria, with approximately 3.5% gap, although the PSO has generated some outliers 

towards the higher minimum bandwidth.
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Figure 7-17 The performance of the GA and the PSO algorithms on small scale static test 

problems in terms of the minimum (nonzero) bandwidth between all user pairs. (a) 

Boxplot (b) Best, average and worst performances over all problem instances

When the average total bandwidth results are compared, the NDBGA has 

outperformed the PSO and CPLEX on an average basis, while PSO has produced some 

better outliers. These results can be seen in Figure 7-18.
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Figure 7-18 The performance of the GA and the PSO algorithms on small scale static test 

problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best, 

average and worst performances over all problem instances

In terms of the solution times, CPLEX recorded the worst performance, which is 

not surprising. Although the PSO returned slightly quicker solutions on the average, its 
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poorer performance on the connectivity metrics makes the NDBGA the preferred 

optimizer for this group of problems. The solution time results are presented in Figure 

7-19.
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Figure 7-19 The performance of the GA and the PSO algorithms on small scale static

problems in terms of the solution time. (a) Boxplot (b) Best, average and worst 

performances over all problem instances
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7.4.1.2 Medium Static Problems

The comparisons on medium scale problems are done on 20 test problems with 10 

users and 10 agents. Problem instances are generated as explained in Section 7.4.1. Only 

the heuristic algorithms could be tested on this scale, due to the complexity of the MIP 

model. For the NDBGA and PSO solutions, each problem is solved 5 times with different 

random number seeds.
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Figure 7-20 The performance of the GA and the PSO algorithms on medium scale static 

test problems in terms of the % user connectivity. (a) Boxplot (b) Best, average and worst 

performances over all problem instances

Figure 7-20 presents the average % user connectivity among the network. For this 

group of problems, the performance of the NDBGA is clearly superior to the PSO. There 

is an approximately 10% performance gap between the two. The NDBGA has 

successfully returned solutions with full communication except a few outliers.
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Figure 7-21 The performance of the GA and the PSO algorithms on medium scale static 

test problems in terms of the minimum (nonzero) bandwidth between all user pairs. (a) 

Boxplot (b) Best, average and worst performances over all problem instances
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Figure 7-22 The performance of the GA and the PSO algorithms on medium scale static 

test problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best, 

average and worst performances over all problem instances

The performance of the NDBGA is also superior in terms of the remaining 

performance criteria. The average minimum and total bandwidth are both approximately 
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25% higher than the PSO while the solution time is approximately 20% quicker. The 

results are presented in Figure 7-21, Figure 7-22 and Figure 7-23.
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Figure 7-23 The performance of the GA and the PSO algorithms on medium scale static

problems in terms of the solution time. (a) Boxplot (b) Best, average and worst 

performances over all problem instances
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7.4.1.3 Large Static Problems

The comparisons on large scale problems are done on 10 test problems with 20 

users and 20 agents. Problem instances are generated as explained in Section 7.4.1. Only 

the heuristic algorithms could be tested on this scale, due to the complexity of the MIP 

model. For the NDBGA and PSO solutions, each problem is solved 5 times with different 

random number seeds.

Both algorithms returned solutions with 100% user connectivity for all test runs. 

Therefore only comparisons on the average minimum bandwidth, average total 

bandwidth and solution time are presented.
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Figure 7-24 The performance of the GA and the PSO algorithms on large scale static test 

problems in terms of the minimum (nonzero) bandwidth between all user pairs. (a) 

Boxplot (b) Best, average and worst performances over all problem instances
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Figure 7-25 The performance of the GA and the PSO algorithms on large scale static test 

problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best, 

average and worst performances over all problem instances

As seen in Figure 7-25 and Figure 7-26, the average performance of the NDBGA is 

approximately 10% better than the PSO in terms of the minimum bandwidth between 
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user pairs, and about 3% better then PSO in terms of the total bandwidth. In addition to 

this, the average solution return time is about twice as long for the PSO.
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Figure 7-26 The performance of the GA and the PSO algorithms on large scale static 

problems in terms of the solution time. (a) Boxplot (b) Best, average and worst 

performances over all problem instances
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Table 7-1 presents paired-t test results for NDBGA and PSO performances on static 

test problem instances.

Table 7-1 Paired-t tests for NDBGA and PSO on static scenarios

Mean PerformanceProblem

Size
NDBGA PSO

Paired-t Test

p-value

% User Connectivity 56.267 50.600 0.003

Min. Bandwidth (Mbps) 10.924 6.541 0.000

Small

Total Bandwidth (Mbps) 110.685 71.331 0.000

Solution Time (sec) 11.699 6.226 0.000

% User Connectivity 96.178 84.756 0.000

Min. Bandwidth (Mbps) 3.674 2.604 0.006

Medium

Total Bandwidth (Mbps) 432.840 326.446 0.000

Solution Time (sec) 51.401 66.383 0.006

% User Connectivity 100.000 100.000 N/A

Min. Bandwidth (Mbps) 5.156 4.533 0.192

Large

Total Bandwidth (Mbps) 2573.723 2490.506 0.289

Solution Time (sec) 477.789 1141.468 0.000

Table 7-1 suggests that almost all practically significant differences in 

performances of NDBGA and PSO are statistically significant as well. The PSO suffers 

from long solution times for larger size problems with no improvement on the network 

performance measures when compared with the NDBGA.
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7.4.2 Comparisons on Dynamic Scenarios

The performance analyses of the three optimizers on the dynamic problems are 

presented in this section. Similar to the static case, the results and the four performance 

comparisons are presented as boxplots of all the performance data from all problem 

instances of same type and size, followed by the graph of the best, average and the worst 

performances over replications for each problem instance. The analyses are grouped into 

three problem categories; small, medium and large, depending on the number of nodes.

The connectivity performance metrics for the dynamic problems are calculated at 

the end of each time step and reported as the average over the time span of the problem. 

The solution time for the dynamic problems reflect the time it takes to complete a full 

simulation over the entire time span.

7.4.2.1 Small Dynamic Problems

The comparisons on small scale problems are done on 20 dynamic problems with 4 

users and 3 agents in a time span of 100 time steps. The problem instances are generated 

as explained in Section 7.2 and the test problem generation code given in appendices Ap-

2 and Ap- 3. For the NDBGA and PSO solutions, each problem is solved 5 times with 

different random number seeds.

An example problem and its solution is given in Figure 7-27. In the figure, the 

diamond shaped nodes represent user nodes and the round shaped nodes represent the 

agent nodes. The time caption shows the simulation time which runs from 1 to 100 for (a) 

at time t = 1, (b) at t = 25, (c) at t = 50 and (d) at t = 75. 
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Figure 7-27 An example small scale dynamic scenario shown at (a) t = 1, (b) t = 25, (c) t

= 50 and (d) t = 75, diamond shape represents user nodes and round shape represents 

agent nodes

When the average results are analyzed, as seen in Figure 7-28 the PSO based 

mobile agent location optimizer performed the best in terms of the average % user 

connectivity. PSO is followed by the GA with approximately a 1% gap and finally, the 

MIP model with approximately a 3.5% gap.  
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Figure 7-28 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 

small scale dynamic test problems in terms of the average % user connectivity. (a) 

Boxplot (b) Best, average and worst performances over all problem instances

The GA based optimizer takes the lead in terms of the average minimum and total 

bandwidth among all MANET users. Figure 7-29 gives the performances of the 
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algorithms with respect to the average minimum bandwidth metric. The GA has the lead 

with a gap of approximately 1.5% over the PSO and CPLEX is behind the two heuristics 

again with an approximate performance gap of 9%.
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Figure 7-29 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 

small scale dynamic problems in terms of the average minimum (nonzero) bandwidth 

between all user pairs. (a) Boxplot (b) Best, average and worst performances over all 

problem instances
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The performance of the three algorithms with respect to the total bandwidth 

between MANET users is similar to the minimum bandwidth metric. Again, as seen in 

Figure 7-30, the GA leads with a 2.5% performance gap over the PSO, and around 7% 

over the CPLEX solver.
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Figure 7-30 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 

small scale dynamic problems in terms of the average total bandwidth between all user 

pairs. (a) Boxplot (b) Best, average and worst performances over all problem instances
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Figure 7-31 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 

small scale dynamic problems in terms of the average solution time. (a) Boxplot (b) Best, 

average and worst performances over all problem instances
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Finally, the solution time of the heuristics for the small scale problems is about 1/5
th

of the CPLEX model. As seen in Figure 7-31 with PSO being the fastest with a minor gap 

when compared to the GA.

All three algorithms managed to sustain an average user connectivity of at least 

90%, heuristics being at the higher 90’s.

7.4.2.1.1 Time Varying Performance:

In this part, the analyses of the algorithms’ performance at each time step is 

presented for a typical small size problem. Figure 7-32 and Figure 7-33 show the change 

in % user connectivity, and change in minimum and total bandwidth with time, 

respectively. The dashed lines represent a MANET with no agents present and solid lines 

represent a MANET with 3 mobile agents and 4 users.
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Figure 7-32 Change in % user connectivity over simulation time
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Figure 7-33 Change of (a) minimum bandwidth and (b) total bandwidth with simulation 

time

In the above figures, the positive impact of having the mobile agents in the MANET 

can be clearly seen. The network without mobile agents starts to lose connectivity around 
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t=40, whereas full connectivity is maintained until t=95 with agents. The imporovement 

on the minimum bandwidth is also clearly visible before t=40.

7.4.2.2 Medium Dynamic Problems

The comparisons on medium scale problems are done on 10 dynamic problems with 

8 users and 6 agents in a time span of 100 time steps. For the NDBGA and PSO, each 

problem is solved 5 times with different random number seeds.

When the results are analyzed, unlike the small scale problems, for the medium 

scale the genetic algorithm performed superior to the PSO with respect to all three 

performance measures, and the solution time. However, as it can be observed from Figure 

7-34, that the performance gap for the average % user connectivity measure is quite 

narrow. 
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Figure 7-34 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on

medium scale dynamic problems in terms of the average % user connectivity. (a) Boxplot 

(b) Best, average and worst performances over all problem instances

Figure 7-35 shows the performance of the algorithms on the average minimum 

bandwidth between all MANET user pairs. In terms of the minimum bandwidth, the GA 
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lead is followed by the PSO by a 10% gap, while the MIP model suffers from significant 

lack of performance. 

With the medium scale problems, the MIP model became significantly 

overwhelmed and unstable. The CPLEX solver was unable to solve 3 out of 10 test 

problems, even with the time limitation removed. On the ones it could solve, it suffered 

from lack of performance due to the problem scale. Due to this issues, the large scale 

problems are only tested with the heuristic algorithms.
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Figure 7-35 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 

medium scale dynamic problems in terms of the average minimum (nonzero) bandwidth 

between all user pairs. (a) Boxplot (b) Best, average and worst performances over all 

problem instances
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A performance similar to the minimum bandwidth measure is seen on the average 

total bandwidth. Again, as seen in Figure 7-36, the GA has a performance lead over the 

PSO by approximately 3%.
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Figure 7-36 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 

medium scale dynamic problems in terms of the average total bandwidth between all user 

pairs. (a) Boxplot (b) Best, average and worst performances over all problem instances
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Figure 7-37 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on 

medium scale dynamic problems in terms of the average solution time. (a) Boxplot (b) 

Best, average and worst performances over all problem instances
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7.4.2.2.1 Time Varying Performance:

In this part, the analyses of algorithms’ performance at each time step is presented 

for an example medium size problem. Figure 7-38 and Figure 7-39 show the change in % 

user connectivity, and change in minimum and total bandwidth with time, respectively. 

The dashed lines represent a MANET with no agents present and solid lines represent a 

MANET with 6 mobile agents and 8 users.
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Figure 7-38 Change in % user connectivity over simulation time

The impact of mobile agents on the MANET performance in terms of connectivity 

is significant. The network with agents never loses connectivity. Moreover, the minimum 

and the total bandwidth performance is significantly improved as seen in Figure 7-39.
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Figure 7-39 Change of (a) minimum bandwidth and (b) total bandwidth with simulation 

time
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7.4.2.3 Large Dynamic Problems

The comparisons on large scale problems are done on 5 dynamic problems with 16 

users and 12 agents over a time span of 100 time steps. For the NDBGA and PSO, each 

problem is solved 5 times with different random number seeds.

When the results are analyzed, it can be seen that the NDBGA algorithm performed 

slightly better in terms of average %user connectivity. The boxplot and the best, average 

and the worst performances for every problem instance can be seen in Figure 7-40 (a) and 

(b), respectively.
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Figure 7-40 The performance of the GA and the PSO algorithms on large scale dynamic 

problems in terms of the average % user connectivity. (a) Boxplot (b) Best, average and 

worst performances over all problem instances

When the results for the average minimum bandwidth between user pairs are 

analyzed, the PSO shows a slightly better overall average performance, around 9%, with 
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larger variations within problem instances. The boxplot and the mean value graphs are 

given in Figure 7-41.
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Figure 7-41 The performance of the GA and the PSO algorithms on large scale dynamic 

problems in terms of the average minimum (nonzero) bandwidth between all user pairs. 

(a) Boxplot (b) Best, average and worst performances over all problem instances
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The NDBGA and the PSO algorithms perform almost the same in terms of the

overall average total bandwidth between user pairs, with PSO having larger variance

within problem instances. The boxplot and the mean value comparison graphs are given 

in Figure 7-43.
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Figure 7-42 The performance of the GA and the PSO algorithms on large scale dynamic 

problems in terms of the average total bandwidth between all user pairs. (a) Boxplot (b) 

Best, average and worst performances over all problem instances
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The average solution times for the NDBGA and the PSO for large scale dynamic 

problems are significantly different. Although the PSO’s performance for the average 

minimum and the total bandwidth measures is quite close to the NDBGA, the 

computation time is significantly higher. The PSO’s average performance is around 33% 

slower than the NDBGA. Furthermore, NDBGA’s performance for the shortest and the 

longest duration solutions are both superior to those of PSO’s. The boxplot and the mean 

value graphs for the solution time are given in Figure 7-43.
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Figure 7-43 The performance of the GA and the PSO algorithms on large scale dynamic 

problems in terms of the solution time. (a) Boxplot (b) Best, average and worst 

performances over all problem instances

7.4.2.3.1 Time Varying Performance:

In this part, the analyses of the algorithms’ performance at each time step is 

presented for an example large size problem. Figure 7-44 and Figure 7-45 show the 
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change in % user connectivity, and change in minimum and total bandwidth with time, 

respectively. The dashed lines represent a MANET with no agents present and solid lines 

represent a MANET with 12 mobile agents and 16 users.

0 10 20 30 40 50 60 70 80 90 100

20

30

40

50

60

70

80

90

100

Time

%
 
U

s
e

r
 
C

o
n

n
e

c
t
i
o

n

With Agents

With No Agents

Figure 7-44 Change in % user connectivity over simulation time

The impact of mobile agents on the MANET performance in terms of connectivity 

is significant. The network with no agents loses full connectivity a little before t = 40, and 

constantly degrades after that while the network with mobile agents is able to regain and 

maintain connectivity. Moreover, the minimum and the total bandwidth performance is 

significantly improved as seen in Figure 7-45.
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Figure 7-45 Change of (a) minimum bandwidth and (b) total bandwidth with simulation 

time

Table 7-2 presents the paired-t test results for NDBGA and PSO performance on 

dynamic scenarios.
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Table 7-2 Paired-t tests for NDBGA and PSO on dynamic scenarios

Mean PerformanceProblem

Size
NDBGA PSO

Paired-t Test

p-value

Avg. % User Connectivity 94.558 95.318 0.082

Avg. Min. Bandwidth (Mbps) 32.042 31.517 0.002

Small

Avg. Total Bandwidth (Mbps) 210.563 208.239 0.000

Solution Time (sec) 98.428 84.049 0.000

Avg. % User Connectivity 86.586 85.561 0.013

Avg. Min. Bandwidth (Mbps) 22.316 21.279 0.004

Medium

Avg. Total Bandwidth (Mbps) 810.583 786.524 0.001

Solution Time (sec) 832.144 944.363 0.000

Avg. % User Connectivity 95.608 95.239 0.332

Avg. Min. Bandwidth (Mbps) 22.147 24.323 0.040

Large

Avg. Total Bandwidth (Mbps) 4806.391 4835.774 0.169

Solution Time (sec) 11492.028 16116.164 0.000

Table 7-2 suggests that the performances of NDBGA and the PSO for mobile agent 

location optimization are significantly different at the α=0.05 level of significance for 

dynamic problems for almost all performance criteria. Although generally comparable 

results are achieved in terms of network performance, the PSO suffers from long solution 

times as the problem size increases.
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7.5 Cost-benefit Analyses

When using mobile agents in real life, each agent will have an associated fixed cost 

and operating costs. In order to plan the required number of agents -or resources- prior to 

an operation, the proposed model can be used as a simulation tool to see the estimated 

network performance with different numbers of agents incorporated into the network.

The following example is a demonstration of such a simulation. A 20 user problem 

is simulated with the number of mobile agents ranging from 0 to 10. The number of 

agents versus the average network performance over 100 time steps is provided in the 

figures, followed by discussion.
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Figure 7-46 Number of mobile agents versus average % user connectivity
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In Figure 7-46, the change in average % user connectivity with increasing agent 

number is presented. Although full connectivity is achieved with only 3 agents, it is also 

true that full connection was lost with 5 agents. This is because the agents blend in and 

evolve with the network. The evolution with 3 agents can be different than with 5 agents

because the best agent locations at each time step will change for each agent with 

changing number of agents. The graph suggests that number of agents should be on the 

greater side, preferably at least 6 in this case. As a general methodology, this also 

suggests that test simulations should be done with more agents than what is thought 

necessary to see whether a steady connectivity and performance is achieved, or not.

The following graphs present the time varying performances with 0, 3, 6 and 10 

agents. In Figure 7-49, cases with 3, 6 and 10 agents are 100% connected all the time.
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In Figure 7-50, the effects on the minimum and the total bandwidth is seen. 

Although full connectivity is achieved, for the case with 3 agents, the bandwidth 

properties are much better with 6 or 10 agents. A greater benefit is experienced when the 

agent number is increased from 3 to 6 than 6 to 10. The scenario with 10 agents can 

maintain maximum possible network performance until t=70 and performs better than 

others towards the end of the simulation (t>70) when the network is the least dense, 

which is expected.
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Figure 7-50 Number of agents versus the change of (a) minimum bandwidth and (b) total 

bandwidth with simulation time
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CHAPTER 8

8. CONCLUSIONS

In this research, a new model is proposed to conceptualize an autonomous topology 

optimization for mobile ad hoc networks. Mobile ad hoc networks are advantageous in 

many aspects. They do not require a costly infrastructure, and they are flexible and 

immediately available to serve the tasks and needs of the users. However, there are 

topological challenges that affect connectivity and performance due to their mobile 

nature. The proposed approach relocates a number of mobile agents within their mobility 

capabilities to help maintain a suitable level of communication service in the network.

The representation of the wireless ad hoc network communications as network 

flows and optimization using a maximum flow model is a novel approach. It is very 

responsive to small changes in topology when evaluating network connectivity and 

performance. Also, it can be used with any signal attenuation model when calculating the 

data flow rates.

The dynamic nature of the problem is a challenge, but it also enables the optimizer 

to gain additional information by leveraging the dynamism. The optimization at a new 

time step can benefit from the knowledge of the best solution from the previous time step. 

This results from the fact that motion has a time and space continuity and for small 

increments in time, the velocity of objects are usually correlated with predecessor and 
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successor velocities. Another benefit based on the dynamism is the ability to predict 

future user locations. By making use of the position data from a few time steps back, the 

optimizer can predict where the user nodes will be positioned over a specified prediction 

horizon and thus position the agents for better performance. The inclusion of this 

additional information is algorithm independent. The genetic algorithm, the particle 

swarm algorithm or any other algorithm that is programmed to solve the proposed model 

can benefit from the additional information.

The non-deterministic decoding for binary coded genetic algorithms was developed 

during this research but is applicable to a wide range of continuous optimization 

problems. It outperformed previous approaches to the resolution deficiency that is 

experienced when solving problems in continuous domain with binary encoded genetic 

algorithms. The non-deterministic decoding method enables the genetic algorithm to 

effectively work its crossover and mutation mechanisms without the need to increase the 

chromosome length for precision only.

The approximate MIP model proposed in this research is also new. It optimizes the 

locations of agent nodes in a network with an objective to maximize a function of the all-

pair maximum flow and total maximum flows between node pairs. The movements of 

agent nodes affect the link capacities, which is incorporated into the model, as well as the 

agent travel distance constraints. The nonlinear link distance versus capacity relationship

and the Euclidean link distance and agent travel distances are modeled using piecewise 

linear approximations. The model, while being not as effective as the heuristic optimizers 

tested, shows how complex the problems are, even very small sizes.
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The heuristic algorithms have outperformed the MIP model, especially with respect 

to the solution time. They outperformed the MIP model with respect to the performance 

criteria most of the time because the heuristics allow greater flexibility when defining the 

objective function when the network is not fully connected. Among the heuristics, both 

the genetic algorithm and the particle swarm optimizations’ performances were close in 

terms of solution quality, but the genetic algorithm in general, performed better in terms 

of the solution time.

The proposed approach, while developed for dynamic topology optimization, easily 

adapts to a static scenario by increasing the agent velocity constraints. The static scenario 

is useful when users want to improve an existing system of sensors or communication 

hubs already positioned in the field, or when designing a new static system.

The approach could also be used for “what if” purposes before launching an actual 

network in the field. The simulation is useful to plan for the most efficient number of 

mobile agents to serve under a certain scenario, and to consider cost / benefit trade offs.

For future research, a combination of the static model and the dynamic model might

be adapted into a system which will deploy mobile agents into an already operating 

MANET. Another future topic is a slight modification to the objective function. In this 

study, all users are considered to be of equal importance. This could be readily changed, 

and weighted user importance objectives could be investigated. Different user mobility 

models could be used with the proposed approach. Finally, the model could be extended 

to three dimensions for agent and user motion and communication.
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APPENDIX

Ap- 1 NDBGA Performance compared with conventionally decoded binary GA (CDGA) 

on the continuous test problems

Comparison of NDBGA With a Conventionally Decoded GA (CDGA)

NDBGA CDGA

Fn.

Population

best

Average

population

best

Standard dev. 

of population

best

Average

function

eval.

Standard 

dev. of

function

Eval.

Population

best

Average

population

best

Standard 

dev. of

population

best

F1 <1×10
-30

<1×10
-30

<1×10
-30

5,538 938 1.21×10
-3

1.21×10
-3

4.45×10
-19

F2 5.08×10
-12

1.75×10
-10

3.56×10
-10

23,615 16,940 1.57×10
-3

1.57×10
-3

2.22×10
-19

F3 -30.0 -30.0 0.0 15,627 25,839 -30.0 -30.0 <1×10
-30

F4 2.09×10
-1

2.73×10
-1

5.91×10
-2

169,918 99,905 9.29×10
-2

2.60×10
-1

1.10×10
-1

F4
c

4.88×10
-21

2.00×10
-20

1.38×10
-20

59,003 2,253 2.95×10
-7

2.95×10
-7

5.43×10
-23

F5 0.99800384 0.99800384 1.33×10
-14

2,817 8,342 0.9980116 0.9980116 2.28×10
-16

F6 5.55×10
-17

5.55×10
-17

0.0 1,649 339 1.21×10
-3

1.21×10
-3

<1×10
-30

F7 -16.0917200 -16.0917200 1.34×10
-10

3,076 1,716 -16.0832124 -16.0832124 7.29×10
-15

F8 0.3978874 0.3978874 1.30×10
-9

11,185 10,328 0.3989716 0.3989716 1.14×10
-16

F9 -1.0316285 -1.0316285 2.43×10
-10

3,953 6,587 -1.0311667 -1.0311667 <1×10
-30

F10 3.0000000 3.0000000 1.85×10
-13

2,900 4,621 3.0154081 3.0154081 <1×10
-30

F11 -186.7309088 -186.7309088 2.97×10
-9

17,156 9,094 -185.5815858 -185.5815858 2.92×10
-14

F12 1.90×10
-9

2.91×10
-8

2.31×10
-8

219,856 95,307 7.18×10
-2

8.60×10
-2

2.13×10
-2

F13 5.08×10
-10

7.61×10
-10

1.14×10
-10

12,475 1,056 <1×10
-30

<1×10
-30

<1×10
-30

F14 9.46×10
-10

1.53×10
-9

3.23×10
-10

84,377 90,557 7.20×10
-3

1.51×10
-2

3.51×10
-2

F15 <1×10
-30

<1×10
-30

<1×10
-30

8,243 7,569 4.77×10
-3

4.77×10
-3

8.90×10
-19

F16 <1×10
-30

<1×10
-30

<1×10
-30

43,690 19,968 3.99×10
-1

3.99×10
-1

1.14×10
-16

F17 8.45×10
-10

1.55×10
-8

1.06×10
-8

125,786 40,860 1.5974995 1.5974995 6.83×10
-16

F18 6.13×10
-10

9.47×10
-10

2.11×10
-10

131,009 1,791 1.21×10
-2

1.21×10
-2

<1×10
-30

F19 5.12×10
-10

2.58×10
-8

2.41×10
-8

313,455 44,343 6.61×10
-1

6.87×10
-1

8.13×10
-2

F20 <1×10
-30

<1×10
-30

<1×10
-30

30,152 15,898 2.68×10
-1

2.68×10
-1

5.70×10
-17
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Ap- 2 Test problem generation code for Matlab

This function accepts rand_seed, NoOfUsers, NoOfAgents, and NumberOfTimeSlots as 

input parameters. NumberOfTimeSlots is set to 1 for static problems. The NodeXY cell 

stores an array of X and Y coordinates of the users for each time step t as 

NodeXY{t}(UserID,1) for the x-coordinate and NodeXY{t}(UserID,2) for the y-

coordinate of user UserID ∈ [1,2,3,…,NoOfUsers] 

rand('state',rand_seed); % Always the same results default

NoOfUsers = NoOfUsersLcl; %The number of users getting service

NoOfAgents = NoOfAgentsLcl; %The number of remote controlled agents

NodeSize = NoOfUsers + NoOfAgents;    %total number of moving nodes

MinX = 0;

MaxX = 5;

MinY = 0;

MaxY = 5;

if(NumberOfTimeSlots == 1)

    StartXY_User = unifrnd(0,MaxX,NoOfUsers,2);    %randomly create 

starting XY coordinates default

else

if(NoOfAgents <= 5)

        StartXY_User = unifrnd(0,MaxX/3,NoOfUsers,2);    %randomly 

create starting XY coordinates default

else

        StartXY_User = unifrnd(0,MaxX/2,NoOfUsers,2);    %randomly 

create starting XY coordinates default

end

end

DestXY_User = unifrnd(0,MaxX-1,NoOfUsers,2); %randomly create 

destination XY coordinates default

StartXY_Agent_temp = zeros(NoOfAgents,2);

StartXY_temp = [StartXY_User %combine the start positions

    StartXY_Agent_temp] ;

NodeXY = cell(1, NumberOfTimeSlots);
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NodeXY{1} = StartXY_temp; %assign the current XY coordinates of the 

nodes to the initial coordinates

Vmin = 0.02; %minimum linear speed of mobile nodes default

Vmax = 0.05; %maximum linear speed of mobile nodes default

Velocity = unifrnd(Vmin,Vmax,NoOfUsers,1); %randomly assign velocities

RangeNodes = ones(NodeSize,1) * 1.0; %everbody has the same range

DeltaXY = DestXY_User - NodeXY{1}(1:NoOfUsers,:);   %find delta X and Y 

coordinates from destination to the current location

UV(:,1) = DeltaXY(:,1)./((DeltaXY(:,1).^2 + DeltaXY(:,2).^2).^0.5);    

%normalize the deltas calculated above

UV(:,2) = DeltaXY(:,2)./((DeltaXY(:,1).^2 + DeltaXY(:,2).^2).^0.5);    

%normalize the deltas calculated above

%start generate user trajectory

for time = 1:NumberOfTimeSlots

%get the euclidian distance between current position and the 

destination

    DeltaXY = DestXY_User - NodeXY{time}(1:NoOfUsers,:);   %find delta 

X and Y coordinates from destination to the current location

    ScaleFactors = ( (DeltaXY(:,1).^2 + DeltaXY(:,2).^2).^0.5 ); 

%calculate the distance from current location to the destination

    alfa = 0.95; %weight of the current direction

    UV(:,1) = alfa*UV(:,1) + (1-alfa)*DeltaXY(:,1)./ScaleFactors;    

%normalize the distance calculated above

    UV(:,2) = alfa*UV(:,2) + (1-alfa)*DeltaXY(:,2)./ScaleFactors;    

%normalize the distance calculated above

    DestReached{time} = find(ScaleFactors<Velocity); %find the nodes 

that have made it to the destination

    UV(DestReached{time},1) = 0;    %no more movement for the nodes at 

their destinations

    UV(DestReached{time},2) = 0;    %no more movement for the nodes at 

their destinations

for j = 1:NoOfUsers %for every node

if (rand<0.1) %change the path angle with a small probability

            teta = unifrnd(-pi/4,pi/4);%random rotation angle

            rot_matrix = [cos(teta) sin(teta)

-sin(teta) cos(teta)] ;%2D rotation matrix

            RotatedUVj = [UV(j,1) UV(j,2)] * rot_matrix; %rotate the 

direction unit vectors

            UV(j,1) = RotatedUVj(1,1);%assign rotated direction vectors

            UV(j,2) = RotatedUVj(1,2);%assign rotated direction vectors

end

end
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    Velocity = unifrnd(Vmin,Vmax,NoOfUsers,1); %randomly assign 

velocities

    AgentVelocity = ones(NoOfAgents,1) * 0; %assign agent velocities to 

zero

    NodeXY{time+1}(1:NoOfUsers,1) = 

NodeXY{time}(1:NoOfUsers,1)+Velocity(:,1).*UV(:,1); %calculate the next 

X coordinates

    NodeXY{time+1}(1:NoOfUsers,2) = 

NodeXY{time}(1:NoOfUsers,2)+Velocity(:,1).*UV(:,2); %calculate the next 

Y coordinates

end%generate user trajectory
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Ap- 3 Test problem data

Static cases

NumberOfTimeSlots = 1

Problem Scale NoOfUsers NoOfAgents rand_seed

Small 6 4

675, 948, 375, 468, 

427, 843, 674, 241, 

643, 846, 451, 944, 

346, 466, 841, 523, 

597, 411, 624, 977

Medium 10 10

675, 948, 375, 468, 

427, 843, 674, 241, 

643, 846, 451, 944, 

346, 466, 841, 523, 

597, 411, 624, 977

Large 20 20

675, 948, 375, 468, 

427, 843, 674, 241, 

643, 846

Dynamic cases

NumberOfTimeSlots = 100

Problem Scale NoOfUsers NoOfAgents rand_seed

Small 4 3

675, 948, 375, 468, 

427, 843, 674, 241, 

643, 846, 451, 944, 

346, 466, 841, 523, 

597, 411, 624, 977

Medium 8 6

675, 948, 375, 468, 

427, 843, 674, 241, 

643, 846

Large 14 10

547, 862, 468, 142, 

465
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Ap- 4 AMPL model file

set NODES; #The set of nodes

param x{NODES}; #user node x coordinates (including 

initial agent coordinates)

param y{NODES}; #user node y coordinates (including 

initial agent coordinates)

set AGENTS; #The set of agent nodes

param Vmax{AGENTS}; #Maximum distance that agents can travel 

in one time step

param range; #Wireless transmission range

param MaxDataRate; #Maximum data transmission rate

param M:=10000;

#Arcs between user nodes

set ARCSa:={i in NODES diff AGENTS, j in NODES diff AGENTS:  i<>j and  

( sqrt( (x[i]-x[j])^2+(y[i]-y[j])^2 ) <= range) };

#Arcs between agents and user nodes, an arc is drawn if the agent can 

reach a currently out of range user by travelling

set ARCSb:={i in NODES diff AGENTS, j in AGENTS:  i<>j and  ( sqrt( 

(x[i]-x[j])^2+(y[i]-y[j])^2 ) <= ( range + Vmax[j] ) ) };

set ARCSc:={i in AGENTS, j in NODES diff AGENTS:  i<>j and  ( sqrt( 

(x[i]-x[j])^2+(y[i]-y[j])^2 ) <= ( range + Vmax[i] ) ) };

#Arcs between agent nodes themselves, an arc is drawn if the agents 

currently out of range can reach themselves by travelling

set ARCSd:={i in AGENTS, j in AGENTS:  i<>j and  ( sqrt( (x[i]-

x[j])^2+(y[i]-y[j])^2 ) <= ( range + Vmax[i] + Vmax[j] ) ) };

#Unite the arcs sets

set ARCS:=ARCSa union ARCSb union ARCSc union ARCSd;

param npiece_dist; #number of points to approximate arc 

distance

param npiece_Vmax; #number of points to approximate travel 

distance

param npiece_cap; #number of points to approximate data 

rate

param NumOfUsers; #number of Ad Hoc users

#Arc distance approximation

param rate_x{i in NODES, j in AGENTS, p in 1..npiece_dist : i<>j };
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param limit_x{i in NODES, j in AGENTS, p in 1..(npiece_dist-1) : i<>j 

};

param rate_y{i in NODES, j in AGENTS, p in 1..npiece_dist : i<>j };

param limit_y{i in NODES, j in AGENTS, p in 1..(npiece_dist-1) : i<>j 

};

#Travel distance approximation

param rate_Vmax_x{i in AGENTS, p in 1..npiece_Vmax };

param limit_Vmax_x{i in AGENTS, p in 1..(npiece_Vmax-1) };

param rate_Vmax_y{i in AGENTS, p in 1..npiece_Vmax };

param limit_Vmax_y{i in AGENTS, p in 1..(npiece_Vmax-1) };

#Link capacity (data rate) approximation

param rate_cap{i in NODES, j in AGENTS, p in 1..npiece_cap : i<>j };

param limit_cap{i in NODES, j in AGENTS, p in 1..(npiece_cap-1) : i<>j 

};

var d{ARCS} >=0; #arc 

distance

var xl{AGENTS} >=0; #new 

location of agents x coordinate

var yl{AGENTS} >=0; #new 

location of agents y coordinate

var dx{ARCS} >=0; #arc 

distance in x direction

var dy{ARCS} >=0; #arc 

distance in y direction

var delta_x{AGENTS};

#agent travel in x direction

var delta_y{AGENTS};

#agent travel in y direction

var u{ARCS} >=0, <= MaxDataRate; #data transmission rate

var d2{i in NODES, j in AGENTS : i <> j } >=0; #the 

square of the arc distances

var minflow >= 0;

#all-pair min flow value

set VirtualCommodity := {S in NODES, T in NODES: S<T};

#virtual commodities, each belong to a node pair
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set VirtualCommodity2 := {S in NODES diff AGENTS, T in NODES diff 

AGENTS: S<T}; #virtual commodities within users only

var CommodityFlows {ARCS,VirtualCommodity} >= 0, <= MaxDataRate;

#virtual commodity flow values

var MaxFlowCommodityType {VirtualCommodity} <= MaxDataRate;

#the maximum possible flow of virtual commodity

maximize AllPairMaxFlow : minflow + ( sum{(S,T) in VirtualCommodity2} 

MaxFlowCommodityType[S,T] ) / ( NumOfUsers * (NumOfUsers - 1) / 2 );

#the minimum of maximum possible virtual commodity flows

subject to AllPairMin {(S,T) in VirtualCommodity2}: minflow <= 

MaxFlowCommodityType[S,T];

#every virtual commodity flow need to be within bounds, and they do not 

take up other virtual commodities bandwidth

subject to capacity_all_1 {(i,j) in ARCS, (S,T) in VirtualCommodity}: 

CommodityFlows[i,j,S,T] <= u[i,j];

#if node not the source or the target of the specific virtual 

commodity, flow in equals flow out

subject to flow_balance1 {i in NODES, (S,T) in VirtualCommodity: S<>i 

and T<>i}: sum{j in NODES: (i,j) in ARCS} CommodityFlows[i,j,S,T] -

sum{j in NODES: (j,i) in ARCS} CommodityFlows[j,i,S,T] = 0;

#if node the source of the specific virtual commodity, flow difference 

equals +flow

subject to flow_balance2 {(S,T) in VirtualCommodity}: sum{j in NODES: 

(S,j) in ARCS} CommodityFlows[S,j,S,T] - sum{j in NODES: (j,S) in ARCS} 

CommodityFlows[j,S,S,T] = MaxFlowCommodityType[S,T];

#if node the target of the specific virtual commodity, flow difference 

equals -flow

subject to flow_balance3 {(S,T) in VirtualCommodity}: sum{j in NODES: 

(T,j) in ARCS} CommodityFlows[T,j,S,T] - sum{j in NODES: (j,T) in ARCS} 

CommodityFlows[j,T,S,T] = -1*MaxFlowCommodityType[S,T];

#Arc distance constraints (absolute value)

subject to Distance_x1a {i in NODES, j in AGENTS : (i,j) in ARCS }: 

dx[i,j] >= x[i]-xl[j];

subject to Distance_x2a {i in NODES, j in AGENTS : (i,j) in ARCS }: 

dx[i,j] >= xl[j]-x[i];

subject to Distance_y1a {i in NODES, j in AGENTS : (i,j) in ARCS }: 

dy[i,j] >= y[i]-yl[j];
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subject to Distance_y2a {i in NODES, j in AGENTS : (i,j) in ARCS }: 

dy[i,j] >= yl[j]-y[i];

#Arc distance constraints, approximate the squares of each distance 

component and add to get arc (i,j) length (squared)

subject to InWirelessRange_1a {i in NODES, j in AGENTS : (i,j) in ARCS 

}:

   << {p in 1..npiece_dist-1} limit_x[i,j,p];{p in 1..npiece_dist} 

rate_x[i,j,p]>> dx[i,j] +<< {p in 1..npiece_dist-1} limit_y[i,j,p];{p 

in 1..npiece_dist} rate_y[i,j,p]>> 

dy[i,j] <= d2[i,j];

#Set arc capacities with the arc length squared

subject to Capacity_A {i in NODES, j in AGENTS : (i,j) in ARCS }:

u[i,j] <=  << {p in 1..npiece_cap-1} limit_cap[i,j,p];{p in 

1..npiece_cap} rate_cap[i,j,p] >> (d2[i,j],range^2);

subject to Capacity_B {j in AGENTS, i in NODES : (j,i) in ARCS }:

u[j,i] <= u[i,j];

#Travel distance constraints (absolute value)

subject to Travel_x_1 {j in AGENTS}: delta_x[j] >= x[j]-xl[j];

subject to Travel_x_2 {j in AGENTS}: delta_x[j] >= xl[j]-x[j];

subject to Travel_y_1 {j in AGENTS}: delta_y[j] >= y[j]-yl[j];

subject to Travel_y_2 {j in AGENTS}: delta_y[j] >= yl[j]-y[j];

#Travel range constraints

subject to InMotionRange_1 {i in AGENTS}:

   << {p in 1..npiece_Vmax-1} limit_Vmax_x[i,p];{p in 1..npiece_Vmax} 

rate_Vmax_x[i,p]>> delta_x[i] +<< {p in 1..npiece_Vmax-1} 

limit_Vmax_y[i,p];{p in 1..npiece_Vmax} rate_Vmax_y[i,p]>> 

delta_y[i] <= Vmax[i]^2;
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Ap- 5 AMPL run file

include in.inf;

model model_cap.mod;

#Data file

data NodeLocation.dat #from Matlab

#Mobility distance approximation

for {i in AGENTS} {

for { p in 1..(npiece_Vmax-1)}{

let limit_Vmax_x[i,p]:=p*(Vmax[i]/(npiece_Vmax-1));

let limit_Vmax_y[i,p]:=p*(Vmax[i]/(npiece_Vmax-1));

}

let rate_Vmax_x[i,1]:=limit_Vmax_x[i,1];

let rate_Vmax_y[i,1]:=limit_Vmax_y[i,1];

 for { p in 2..(npiece_Vmax-1)}{

let rate_Vmax_x[i,p]:=(limit_Vmax_x[i,p]^2-

limit_Vmax_x[i,p-1]^2)/(limit_Vmax_x[i,p]-limit_Vmax_x[i,p-1]);

let rate_Vmax_y[i,p]:=(limit_Vmax_y[i,p]^2-

limit_Vmax_y[i,p-1]^2)/(limit_Vmax_y[i,p]-limit_Vmax_y[i,p-1]);

}

let rate_Vmax_x[i,npiece_Vmax]:=M;

let rate_Vmax_y[i,npiece_Vmax]:=M;

     }

#Range distance approximation

for {i in NODES, j in AGENTS : i <>j } {

for { p in 1..(npiece_dist-1)}{

let limit_x[i,j,p]:=p*(range/(npiece_dist-1));

let limit_y[i,j,p]:=p*(range/(npiece_dist-1));

}

let rate_x[i,j,1]:=limit_x[i,j,1];

let rate_y[i,j,1]:=limit_y[i,j,1];

for { p in 2..(npiece_dist-1)}{

let rate_x[i,j,p]:=(limit_x[i,j,p]^2-limit_x[i,j,p-

1]^2)/(limit_x[i,j,p]-limit_x[i,j, p-1]);

let rate_y[i,j,p]:=(limit_y[i,j,p]^2-limit_y[i,j,p-

1]^2)/(limit_y[i,j,p]-limit_y[i,j, p-1]);

}

let rate_x[i,j,npiece_dist]:=M;

let rate_y[i,j,npiece_dist]:=M;

    }

#Data rate approximation
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for { i in NODES, j in AGENTS : i <>j } {

for { p in 1..(npiece_cap-1)}{

let limit_cap[i,j,p]:=( p*(range/(npiece_cap-1)) )^2;

}

let rate_cap[i,j,1]:= MaxDataRate * ( 1.0/(1 + exp(10*( 

limit_cap[i,j,1]^0.5/range - 0.5))) - 1.0 ) / limit_cap[i,j,1];

for { p in 2..(npiece_cap-1)}{

let rate_cap[i,j,p]:= MaxDataRate * ( 1.0/(1 + exp(10*( 

limit_cap[i,j,p]^0.5/range - 0.5))) - 1.0/(1 + exp(10*( 

limit_cap[i,j,p-1]^0.5/range - 0.5))) ) / (limit_cap[i,j,p]-

limit_cap[i,j,p-1]); 

}

let rate_cap[i,j,npiece_cap]:=0;

}

#Fix the data rates for users

for { (i,j) in ARCS: i not in AGENTS and j not in AGENTS } {

if ( ((x[i]-x[j])^2+(y[i]-y[j])^2)^0.5<=range) then{

fix u[i,j] := MaxDataRate * 1.0/(1+exp(10*( ((x[i]-

x[j])^2+(y[i]-y[j])^2)^0.5/range - 0.5)));

}

else{

fix u[i,j]:= 0;

}

}

option cplex_options 'mipgap=0.10 timelimit=120';

solve;

printf"">agentLocation.out;

for {i in AGENTS}{

printf"%f %f;\n",xl[i],yl[i]>>agentLocation.out;

}
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Ap- 6 Example data file for AMPL model (Stationary scenario)

param : NODES : x y :=

1 1.77560 2.85915

2 0.71296 4.84898

3 4.53495 4.72558

4 1.25040 3.95480

5 1.84809 2.74672

6 2.93035 1.23632

7 2.37250 2.88927

8 4.39605 2.40152

;

param range:= 1.00000;

param npiece_dist:= 8;

param npiece_Vmax:= 8;

param npiece_cap:= 8;

param MaxDataRate:= 54;

param NumOfUsers:= 5;

param : AGENTS : Vmax :=

6 4.23889

7 2.83694

8 4.42213

;




