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Mobile wireless ad hoc networks are instantaneous, autonomous
telecommunication networks that provide service to users wherever and whenever the
service is needed. The communication depends on wireless links that are formed between
the users. A link is formed between two users if they are within each other’s wireless
communication range. The mobility in these networks can cause links to disconnect,
disrupting communications. A new strategy is proposed which controls the movements of
some mobile agents to maintain network connectivity. The main objective of these
mobile agents is to maximize network data flow, which is formulated as an al-pair
maximum flow problem. This is accomplished by optimizing the movements of the
agents to their next locations as the user nodes travel freely in the field. The

representation of ad hoc network performance in terms of an all-pair maximum flow
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problem is novel asis dynamically optimizing the agent nodes using heuristic algorithms
integrated with network flow agorithms. Two evolutionary inspired, population based
heuristic algorithms; a genetic algorithm and a particle swarm are developed along with
an approximate linear programming model as optimizer tools. The results show the
advantage of employing heuristic agorithms due to the complexity of the problem. While
the approximate linear model could only solve small static and medium dynamic
problems with poor results, the heuristics performed successfully for problems two to
four times larger. These heuristic approaches will enable robust and physically self
organizing networks with superior connectivity properties. The approach proposed in this
research can be applied to static scenarios and dynamic situations. This is important
because there are practical static applications of ad hoc networks, mainly in sensor
networks. The novel models and algorithms developed should enable new research and

and commercial opportunitiesin ad hoc wireless networking.

Vi

www.manaraa.com



ACKNOWLEDGEMENTS

The author would like to thank Dr. Alice E. Smith and Dr. Abdullah Konak for
their invaluable help and guidance throughout this research. Also, the author expresses
his gratitude to Dr. Robert L. Bulfin and Dr. Jorge Vaenzuelafor their consent to serving
on the dissertation committee, and Dr. Gerry Dozier for his discussions. Special thanks to
all of the Industrial and Systems Engineering faculty, staff and friends who have helped
in many ways.

The author is grateful to his parents, Dr. Berna Dengiz and Mr. A. Tahir Dengiz,
his sister E. Burcin Dengiz Olin, and his brother-in-law Mr. Samuel Olin for their

continuous support, encouragement guidance and love.

Vii

www.manaraa.com



Style manual or journal used: Elsevier, Ad Hoc Networks.
Software used: MS Windows, MS Word, MS Excel, Matlab, MS Visua Studio —
Visua C++, Minitab, BOOST C++ Libraries.

Computer used: Intel P4 3.0 GHz CPU, 1GB RAM, Dell Dimension XPS series PC

viii

ol L ZJI_ELI

www.manharaa.com




TABLE OF CONTENTS

LIST OF FIGURES ... .ottt Xiii
LIST OF TABLES. ... e XX
CHAPTER 1. INTRODUCTION ...ttt sttt ae e sse s eeesneas 1
1.1  Wirdessand Wireline Telecommunication NetWOrKS...........cceoerereneninennns 1
1.2 A HOC NEIWOIKS ..ottt 4
CHAPTER 2. BACKGROUND ..ottt 5
21  WirelessMobile Ad hoc NetWOrkS (MANET) ...cc.oviiiiineneeeeeese e 5
2.2 MANET PefOrManCe. ......ccooiieieeseeeeee e 7
2.3 Applications Of MANET ..ot 10
24  Routing in Ad HOC NEWOIKS .....cc.cciueiieiecie ettt 11
24.1 Proactive ROULING. .......cciverieieeiieie e eie et 12
24.2 Source-initiated On-demand ROULING ..........covverenininieee e 12
243 Hybrid Routing ProtOCOIS..........cooiiiiiieiceeee e 13

25  MANET CONNECLIVILY .....ccitiiieiieite ettt sreene e 13
251 Connectivity VErsuS ROULING.........ccveiereerieeieseesieeee s esie e sreesee e sseeeas 16
252 Connectivity and Performance MeasUres ...........cocovererveereeriesesesiesiesnenne 16
253 BasiC Graph TREOIY .....cc.eoiieeee e 17

iX

www.manaraa.com



26 MANET MODIITY .ot 19

2.7 Future LoCation PrediCtion ............eeeeeeeeeeeeeeeeeeee e e e e e e eaaan 22
2.7.1 CAlUIAr MOEIS. ... 22
2.7.2 A NOC MOUEIS. ... eenesenesessnenessnsssnsnsnensnsnnnnnnnnns 24
2.7.3 KinematiCS APPIrOACH.......oouiieereee et 26

2.8  Heuristic Optimization with Evolutionary Algorithms. Genetic Algorithm and

Particle Swarm OptiMIZaliON..........c.ccveiieie e e e e 27
281 Genetic AlQONTRMS........oui e 27
282 Particle Swarm Optimization (PSO) ........ccccvirerieireieeieeesesese e 30

2.9  Evolutionary Algorithmsin Dynamic Environments...........cccceceevveeveeccieenen, 34

CHAPTER 3. THE PPROPOSED MANET MANAGEMENT SYSTEM: PROBLEM

DESCRIPTION AND MATHEMATICAL MODEL ......oooiiiiiieiesee e 38
3L INETOAUCTION....c.eieieieieeeee ettt sb e e nenae s 38
3.2  TheProposed MANET Management SyStem........ccccceveererieenennnnieeseeneeeeene 39
3.3 TheMobile Agent Location Problem ............cceoveivieevicce e 40

331 The Maximum FIOW ANAlOGY .......ccceiveeiierieieseecee e 40

332 The Mathematical MOdE] ..o 44

3.3.3 The Objective FUNCLION.........cooiieeeeee e 47

3.34 The Mobile Agent Velocity CONStraints..........cceveeeveecieeseecciee e e, 50

3.4  Future Location Prediction Using Kinematics...........ccovevevieeneeiesieeseesie e 51
X

www.manaraa.com



CHAPTER 4. A SPECIAL GENETIC ALGORITHM WITH NON-DETERMINISTIC

BINARY DECODING FOR CONTINUOUS PROBLEMS..........ccccooveiierenieneeieeiee 57
2 R = - 0 (011 o S 58
4.2  NDBGA AlQOIThM. ..ot 59

42.1 1Yo (A7 4 o o 59
4.2.2 Non-deterministic Binary Decoding..........cccccvveveieeiiccieceese e 59
4.2.3 Mapping Rearrangement MeChaniSM ...........cccvevveeeveece s 64
4.2.4 NDBGA AIgOrithm SITUCLUIE.........ccoieiiiererereeeeee e 65
4.2.5 Gray COAING......ceueeueeueeieiese ettt bbbt e e sre e nne e 67
4.2.6 TESING NDBGA ...ttt et 68
4.2.7 NDBGA PerformanCe........coeeieeiiiienieiie et 74

CHAPTER 5. AN APPROXIMATE LINEAR MODEL WITH PIECEWISE LINEAR

APPROXIMATIONS FOR DISTANCE AND DATA FLOW RATE ......ovveveeines 78
51 MaEhEMEALICAl IMOTE ...t emmenennmenemnnnnnn 78
5.2 [INT0] =1 (0] o TR TRTTRTTRTRTTRRTT 81

CHAPTER 6. THE MOBILE AGENT LOCATION OPTIMIZATION SYSTEM AND

THE SIMULATION ENVIRONMENT ...ttt 88
6.1.1 DYNAMIC SCENAINTOS ...ttt e sbe e sne e 89
6.1.2 SEALIC SCENAMOS.......eeeeeueeeeie sttt e r e 90

6.2 The NDBGA for Maobile Agent Location Optimization............cccceeeeeveerveennnne. 90
6.2.1 Tuning the NDBGA ParameterS.........cccceveereiieeseeseseesieeseeseessessessseesens 9
Xi

www.manaraa.com



6.3  ThePSO for Mobile Agent Location Optimization...........cccceeveereneesieesenneenn 97

6.3.1 PSO Parameters .........ccooveiiiiiiieiiicees s 100

6.4  SLOPPING CrITEITA.....eiueiuieiieieriese ettt e 101
6.5  Semi-intelligent Agent BENAVION ........cceioiiiiiiiieiereeeeeee e 102
CHAPTER 7. TEST PROBLEMS AND RESULTS......ooiiii e 106
7.1  Generation of the Static Test Problems ... 107
7.2  Generation of the Dynamic Test Problems...........ccoovviiiicicncne e 107
721 User Mobility MOGEL..........coooiiieiees e 108

7.3  Performance Metrics and Use of Dynamic Information.............ccceeevveeeneennnne 109
731 Dynamic Problem ANalYSES.........cccoiieeiieie et 111
7.3.2 The Effect of Future Location Prediction.............c.ccoeevineeninescienenns 112

7.3.3 The Effect of Using the Best Solutions From the Previous Time Step .. 118

7.4  Algorithm PerformancCes...........coooi oo 124
74.1 Comparisons 0N StatiC SCENAOS. .......cccvveieeiie e 125
7.4.2 Comparisons 0N DyNamiC SCENANOS ........cecveerueieerieeiieseesreeeesree e eneens 142

7.5  COSt-DENEfIt ANAIYSES ..ot 167

CHAPTER 8. CONCLUSIONS ...t s see e 172

REFERENGCES ...ttt sttt sne e e n e e ne e 175

APPENDIX .ttt e e n e n e nne e 184
Xii

www.manaraa.com



LIST OF FIGURES

Figure 2-1 A MANET with six nodes, each with wireless transmission range=1.7,........ 8

Figure 2-2 (a) A connected graph, dmin =1, dmean = 8/5. (b) A 2-connected graph, drin= 2,

Orean = 12/5. (¢) A disconnected graph, drin =1, Omean = 8/5. cevvvveiieiieeieeeeee 19
Figure 2-3 A binary represented multi-variable solution..............cccccveieeie e, 28
Figure 2-4 (@) Single point crossover. (b) Uniform CrosSsover. ..........ccocceveeeeveecieeceecveene. 29
Figure 2-5 Pseudo code for basic PSO mechanism. ..........ccccceveiiececieve e 32
Figure 3-1 Normalized distance vs. normalized datarate, range =450 m. ........c.ccccevunee. 43

Figure 3-2 The pseudo code for the components of the objective function calculation... 49

Figure 3-3 Pseudo code for predicting the location at time (t+H) ........ccoevviieevieccieeen, 52
Figure 3-4 Real trag/ectory (H = 0) ..cc.oceeiiee ettt 53
Figure 3-5 Location prediction With H = 2.......oovoiieceeeceee e 53
Figure 3-6 Location prediction With H = 4 ... 54
Figure 3-7 Location prediction With H = 6.......coviiiiiicee e 54
Figure 3-8 Location prediction With H = 8.......ccooiiiie e 54
Figure 4-1 Two dimensional binary coded search space...........ccocveveeeevecceceece e, 60

Figure 4-2 Regions represented by chromosomes ¢, and ¢, in NDBGA, atwo
JIMENSIONAl CASE.....ecueevieieieesieeiesee e et ste et e e e s reeeesreesseenteeseesseeeesneenseeneens 60

Figure 4-3 Gaussian mapping from binary representation grid to the search space......... 62

Xiii

www.manaraa.com



Figure 4-4 Graphical representation of binary mapping rearrangement for the 2D case . 63
Figure 4-5 NDBGA fIOWCNAIt ........ccooieeeeececeee et 67

Figure 5-1 The piecewise linear approximation of f(x) = x*. An exampleis plotted for x T

[0, 2], P = 3 oot ee ettt ettt ettt n e 84
Figure 6-1 The pseudo code for the mobile agent location optimizer ............cccccvecveeneee. 89
Figure 7-1 Prediction horizon H versus the average minimum bandwidth .................... 113
Figure 7-2 Prediction horizon H versus the average total bandwidth................cc.coce.. 113
Figure 7-3 Prediction horizon H versus the average total solution time.............c.c........ 114

Figure 7-4 Change of (@) % user connectivity (b) all pair minimum bandwidth with

SIMUIELTON TIMIE.....eeti et benreens 115
Figure 7-5 Change of total bandwidth with simulation time...........c.cccceviiniinenenns 116
Figure 7-6 Mobile agent behavior with location prediction ............ccceeeieneninenenennens 117

Figure 7-7 The effect of feeding the best solutions from (t-1) to t on average % user
[00] 101=o: 171 SRS 119
Figure 7-8 The effect of feeding the best solutions from (t-1) to t on average minimum
bandwidth between the MANET USEN PAITS.......ccociierirerenirieeeeee e 119
Figure 7-9 The effect of feeding the best solution from (t-1) to t on average total
bandwidth between the MANET USEN PAITS.......ccceieeiiereeneeie e 120

Figure 7-10 The effect of feeding the best solution from (t-1) to t on average solution

Figure 7-11 Change of (a) % user connectivity (b) all pair minimum bandwidth with
SIMUIBETON THME.....eei bbb nneene e 122

Figure 7-12 Change of total bandwidth with smulation time...........ccccocoiiiinininenns 123

Xiv

www.manaraa.com



Figure 7-13 Solution time for each time SteP.........ccecviiieie e 123
Figure 7-14 Boxplot figure desCription..........cccovieeieece i 125
Figure 7-15 An example problem (@) and its solution (b) for asmall static scenario..... 126
Figure 7-16 The performance of the GA and the PSO algorithms on small scale static test
problems in terms of the % user connectivity. () Boxplot (b) Best, average and
worst performances over al problem INStanCes..........cococcveveciee e 127
Figure 7-17 The performance of the GA and the PSO algorithms on small scale static test
problems in terms of the minimum (nonzero) bandwidth between all user pairs. (a)
Boxplot (b) Best, average and worst performances over al problem instances..... 129
Figure 7-18 The performance of the GA and the PSO algorithms on small scale static test
problemsin terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best,
average and worst performances over all problem instances...........ccccecevvevieenee. 130
Figure 7-19 The performance of the GA and the PSO agorithms on small scale static
problems in terms of the solution time. (&) Boxplot (b) Best, average and worst
performances over al problem iNStanCes............cooviiiriieneccee 131
Figure 7-20 The performance of the GA and the PSO algorithms on medium scale static
test problems in terms of the % user connectivity. (a) Boxplot (b) Best, average and
worst performances over all problem iNStaNCeS..........ccoveveecereese e 133
Figure 7-21 The performance of the GA and the PSO algorithms on medium scale static
test problems in terms of the minimum (nonzero) bandwidth between all user pairs.

(a) Boxplot (b) Best, average and worst performances over al problem instances 134

XV

www.manaraa.com



Figure 7-22 The performance of the GA and the PSO algorithms on medium scale static
test problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b)
Best, average and worst performances over al problem instances.............cccc.c...... 135

Figure 7-23 The performance of the GA and the PSO a gorithms on medium scale static
problems in terms of the solution time. (a) Boxplot (b) Best, average and worst
performances over al problem iNStaNCES..........ccccvevie e 136

Figure 7-24 The performance of the GA and the PSO algorithms on large scale static test
problems in terms of the minimum (nonzero) bandwidth between all user pairs. (a)
Boxplot (b) Best, average and worst performances over al problem instances..... 138

Figure 7-25 The performance of the GA and the PSO algorithms on large scale static test
problemsin terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best,
average and worst performances over all problem instances...........ccccecevvevieenee. 139

Figure 7-26 The performance of the GA and the PSO algorithms on large scale static
problems in terms of the solution time. (&) Boxplot (b) Best, average and worst
performances over al problem iNStanCes............cooviiiriieneccee 140

Figure 7-27 An example small scale dynamic scenarioshownat (a) t=1, (b) t =25, (c) t
=50 and (d) t = 75, diamond shape represents user nodes and round shape represents
20 [= 100 1070 =SS 143

Figure 7-28 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on
small scale dynamic test problemsin terms of the average % user connectivity. (a)
Boxplot (b) Best, average and worst performances over al problem instances..... 144

Figure 7-29 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
small scale dynamic problems in terms of the average minimum (nonzero)

XVi

www.manaraa.com



bandwidth between all user pairs. (a) Boxplot (b) Best, average and worst
performances over al problem iNStanCes............cccovveceieesecce e 145
Figure 7-30 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
small scale dynamic problemsin terms of the average total bandwidth between all
user pairs. (a) Boxplot (b) Best, average and worst performances over all problem
TNISEBINCES. ...ttt ettt e et bbb bt bt et e e e e n et e n b nnennenne s 146
Figure 7-31 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
small scale dynamic problemsin terms of the average solution time. (a) Boxplot (b)
Best, average and worst performances over al problem instances.............cccoen.... 147
Figure 7-32 Change in % user connectivity over Simulation time.............cccoovvevenennns 148

Figure 7-33 Change of (a) minimum bandwidth and (b) total bandwidth with simulation

Figure 7-34 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on
medium scale dynamic problems in terms of the average % user connectivity. (a)
Boxplot (b) Best, average and worst performances over al problem instances..... 151

Figure 7-35 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
medium scale dynamic problems in terms of the average minimum (nonzero)
bandwidth between all user pairs. (a) Boxplot (b) Best, average and worst
performances over al problem iNSaNCES...........cooiveiiiirinene e 153

Figure 7-36 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
medium scale dynamic problems in terms of the average total bandwidth between all
user pairs. (a) Boxplot (b) Best, average and worst performances over al problem

INISEANCES ...ttt e et e e ettt e e e e e e e e e et eeeeeeee e e e neeeeeeeeeaaaanreeeaneeaaaans 154

www.manaraa.com



Figure 7-37 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
medium scale dynamic problems in terms of the average solution time. (a) Boxplot
(b) Best, average and worst performances over all problem instances................... 155

Figure 7-38 Change in % user connectivity over simulation time............ccocovvvevenennns 156

Figure 7-39 Change of (a) minimum bandwidth and (b) total bandwidth with smulation

Figure 7-40 The performance of the GA and the PSO agorithms on large scale dynamic
problems in terms of the average % user connectivity. (a) Boxplot (b) Best, average
and worst performances over all problem instances...........cocceceverenenevcnencnee 159
Figure 7-41 The performance of the GA and the PSO algorithms on large scale dynamic
problemsin terms of the average minimum (nonzero) bandwidth between all user
pairs. (a) Boxplot (b) Best, average and worst performances over al problem
TNISLBINCES. ...ttt ettt b b e st bt et b e e e e bbb e en e e r e nen st nr e 160
Figure 7-42 The performance of the GA and the PSO algorithms on large scale dynamic
problems in terms of the average total bandwidth between al user pairs. (a) Boxplot
(b) Best, average and worst performances over al problem instances................... 161
Figure 7-43 The performance of the GA and the PSO algorithms on large scale dynamic
problems in terms of the solution time. (a) Boxplot (b) Best, average and worst
performances over al problem iNStanCes...........covveiiiirenececc s 163
Figure 7-44 Change in % user connectivity over Simulation time............ccccoocvvevenenens 164

Figure 7-45 Change of (a) minimum bandwidth and (b) total bandwidth with simulation

Figure 7-46 Number of mobile agents versus average % user connectivity................... 167

XViil

www.manaraa.com



Figure 7-47 Number of mobile agents versus average minimum nonzero bandwidth... 168
Figure 7-48 Number of mobile agents versus average total bandwidth ........................ 168

Figure 7-49 Number of agents versus the change in % user connectivity over simulation

Figure 7-50 Number of agents versus the change of (a) minimum bandwidth and (b) total

bandwidth With SIMUIEEiON LIME.......eeeeeeeee e e e 171

XiX

www.manharaa.com




LIST OF TABLES

Table 3-1 Path LOSS VEruS Data RELE.........c.coiiviiciriiriceeeseeeee e 41
Table 4-1 Test FUNCLIONS FL-FLO.........cooiiiiiiiiieeeeeese e 71
Table 4-2 Test FUNCLIONS FLL-F20.........ooiiiiiiceeee e 72
Table 4-3 NDBGA Population Parameters...........ccooevererenesesieseseeeeseesieseesseseessessessens 73
Table 4-4 Results for F1-F5 Compared With DPE............cccooiiiiiieiececeece e 75
Table 4-5 Results for F5-F14 Compared With SZGA ..o 75
Table 6-1 ANOVA analysisfor NDBGA Parameters ..........ccooevereeerieeneeneenesesieseseseens 96
Table 7-1 Paired-t tests for NDBGA and PSO on statiCc SCenarios..........ccccovvereeereennne 141
Table 7-2 Paired-t tests for NDBGA and PSO on dynamicC SCeNarios...........ccocveeeveenenn. 166

XX

ol Ll Zyl_i.LI

www.manharaa.com




CHAPTER 1

INTRODUCTION

With the increasing availability of computers with high processing speeds and large
storage capabilities, individuals as well as businesses heavily depend on them. Moreover,
the high data rate networks that connect computers and networks of computers to each
other have enabled many services, but have increased the dependency of users to these
interconnected networks. Computing is moving towards a time when a non-networked

computer will be nearly useless.

1.1 Wirdessand Wireline Telecommunication Networks

With the development of network technologies, wireline networks (networks built
by cable connections) have become very fast, and reliable. Many researchers have studied
the problems that arise in the design of wireline networks. Numerous methods and
algorithms have been developed and tested which have more or less the same objectives;
maximize reliability, speed, connectivity, and minimize cost [3, 4, 32, 33, 57, 82]. These
objectives are sometimes seen in the form of constraints, where for example a minimum

reliability value should be satisfied while minimizing the total cost.
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Wireline networks have provided users with very fast and reliable networks over
time and a large portion of the world economy now relies completely on these
telecommunication networks. It is important to note that amost any form of information
can be represented digitally today. Video, voice, and paper documents are common
examples of data that are digitized every day. Wireline networks are fast, secure and
reliable but they do have limitations. A significant limitation is that the users have to be
near a data terminal so that they can connect their computer devices. However, it is
crucia in today’s world for individuals to travel and have access to a computer that is
connected to a network. Thisisimportant for businesses or governments to be responsive
to dynamically changing conditions and environments. Another limitation of wireline
networks is that in case of a link failure, the repair job may involve the surrounding
infrastructure.

With the recent developments in technology, very portable computer devices that
have considerable processing speeds and data storage capabilities have become available.
Such devices inherently have the ability to travel, and also manage individua or business
tasks. Of course, portable devices need wirel ess data connectivity.

Wireless data communication networks can be divided into two main categories,
wireless local area networks (WLAN) and wireless wide area networks (WWAN).
Wireless local area networks have been highly developed and commerciaized. In
WLANS, users connect to local wireless access points and thus access local or wide area
networks. The local access points have limited ranges, and the users need to be within the

range of an access point in order to access the network. WLANS can provide users with

www.manaraa.com



very fast data transmission speeds and reliability equivalent to wireline networks.
However, range and mobility limitations exist. Users can only move within a few
hundred feet, losing connectivity when they go out of the access points range. It is
possible to maintain connectivity by “handoff” to other access points covering the new
location, provided that they remain in the same subnet.

The second type of wireless data telecommunication networks (WWAN) is
centered on cellular networks, or the global system of mobile communications (GSM).
GSM has made its way into the lives of countless people. There is currently an estimated
1.5 billion GSM subscribers worldwide [47]. Thisis a huge increase from the 170 million
wireless subscribers in year 2000 [24]. Almost all mobile telephones that are in use today
are using cellular network technology. Similar to WLAN, cellular networking technology
requires base stations, located so a certain area is covered. Base stations are connected to
acentral switching office which also keeps a database of users that are currently using the
network so that the necessary routings can be done. These systems are technologically
advanced and provide users excellent service for voice communications. However,
cellular systems have limited data transfer. While the data rates in cellular networks are
enough for good quality voice communications, they are still very sow for simple
networking tasks involving multimedia or large file transfers.

The newer generation cellular network technologies, i.e. 3G networks, offer higher
data rates than previous cellular networks, but costly investments both in network

infrastructure and subscriber equipment are necessary.
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1.2 AdHoc Networks

A different type of wireless networking technology that was developed a few
decades ago has become popular again and is attracting research interest [24, 81]. Called
ad hoc networks, this type of wireless network does not require any fixed infrastructure
and user devices communicate among themselves via the arbitrary and temporary “ad
hoc” network topologies that they form [35, 41, 81]. Mobile ad hoc networks will be
referred to as MANET in the literature throughout the rest of this paper, following the
common practice in the literature. While the infrastructure topology is fixed and stable in
atraditional WLAN, it is potentially very dynamic ina MANET [53]. Ad hoc networking
had been used in combat fields and by emergency response teams but the wider
availability of wireless capable computers and improved routing protocols have made it
an emergency telecommunication network aternative [7, 24, 35, 41]. Ad hoc networks
are considered essential in 4G wireless network architectures. 4G systems aim to provide
ultra-high transmission speed of up to 100 Mbps, which is 50 times faster than those in
3G networks [24]. More detailed information on the MANET technology is given in the

background section.
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CHAPTER 2

BACKGROUND

In this chapter, some background information about wireless mobile ad hoc
networks, their possible application areas and research challenges are described. The
literature review is given for routing, different approaches for modeling and measuring
mobility and connectivity, and finally for the prediction of mobility in mobile ad hoc

networks.

2.1 Wireless Mobile Ad hoc Networks (MANET)

Ad hoc networks are networks formed without a central administration. They
consist of nodes which use wireless interfaces to send data packets. The nodes in ad hoc
networks can serve as both routers and hosts and they can forward packets on behalf of
other nodes in the networks [41].

The roots of ad hoc networking can be traced back to the late 1960s and early
1970s but the technology had not been developed for the consumer market [24, 41]. The
reason that ad hoc networks are now drawing attention is because of the availability and

popularity of high performance portable handheld computers with wireless
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communication capabilities. An added motivation is that MANET has amost no initial
investment cost.

The importance of being able to form instant, autonomous telecommunication
networks is highlighted by the natural disasters that devastated different parts of the
world in 2004 and 2005. Damage assessment and emergency response teams needed
reliable telecommunication capability where ailmost al fixed infrastructure was damaged
and non-operational for weeks or longer. The following quote is taken from [29], which

describes the situation in New Orleans after the hurricane Katrinain August 2005:

"The devastation was so complete, so comprehensive ... that we couldn't figure
out how bad it was," said Adm. Timothy Keating, chief of the U.S military's
Northern Command, which oversaw the Pentagon's Katrina effort. "On Tim
Keating's list of things we need to work and to analyze very carefully,

communicationsis at the top of that list."

This aspect of ad hoc networking is enough by itself to justify the need for research
to develop its technology and reliability, i.e. its usability.

A main advantage of ad hoc networks is that no infrastructure investment is
necessary. Thisis a huge economic advantage from the point of view of investors. It aso
opens up possibilities in underdeveloped countries where infrastructure investment is
lacking. Ad hoc networks are dynamic and flexible in terms of the coverage area

Network connectivity is afunction of user movements and their relative locations. Thisis
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an advantageous property from the users’ standpoint but the network dynamics need to be
properly managed.

A reliable network is usualy the number one priority for users. A very crude
definition of a reliable network can be given as; the network is always expected to be

available when accessis required, given that the user equipment has no physical defects.

2.2 MANET Performance

There are many factors that affect the performance and reliability of a mobile ad
hoc network. Links between the mobile devices sometime exist, and sometime not,
depending on their locations relative to each other, their transmission power and the
surrounding environment. New mobile devices can enter the system, or existing devices
can disappear for various reasons including loss of battery power or loss of signal
strength due to distance or other environmental causes. Under totally random user
behavior, it is very likely that one or more users will lose their connectivity with the
network or with the parts of the network due to their positions relative to other users. If a
user is outside the range of its nearest neighbor in the network in terms of signal strength,
then its access to the rest of the network will be unavailable.

Communication between the nodes of a MANET can be in a multi hop fashion,
meaning data can be sent to a destination node not directly connected to the source node
using an available route through other nodes. Each user can communicate directly to
other users within its range. To communicate with nodes beyond its range, it needs to use

intermediate nodes to relay the data packets, hop by hop [24]. Figure 2-1 shows a
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MANET with six nodes, each with a transmission range of 1.7 units at two different

times.
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(a (b)
Figure 2-1 A MANET with six nodes, each with wireless transmission range = 1.7,
(a) Connected (b) Disconnected

Gupta and Kumar have shown that if n identical stationary ad hoc network nodes,
each with a data transmission rate of W bits/sec and a fixed range, are randomly |located

to form awireless network using a non-interference protocol, the data throughput realized
by any node for a randomly chosen destination has an upper bound of @V/W) [48].
Even if al parameters such as transmission ranges, traffic patterns and node placements
are optimally arranged, the bound on the throughput becomes M/ Jn ) The apparent trade-

off between the number of nodes and individual throughput rates is due to the multi-hop
nature of wireless ad-hoc networks. Each node generates a certain traffic burden for other

nodes, thus every node uses some of its capacity to relay other nodes data. In order to
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decrease the number of hops necessary to reach a destination node from a source node,
one might think of increasing the transmission range, but this causes increased
interference. The mobility of an ad hoc network introduces additional variations to its
capacity. Grossglauser and Tse suggest that mobility can actually improve the capacity of
an ad hoc network when compared with a fixed network [46]. They propose a
communication model by relaying the data to its destination using a number of relay
nodes, delivering only when the relay node is closer to the destination, within a two-hop
path. This eliminates excessive multi hop requirements. The drawback of this proposal is
that the applications need to be delay tolerant. The communication waits until the mobile
relay nodes are close to the destination nodes. This causes large delays, increasing with
the size of the system, making it unsuitable for rea time applications such as voice
communications or remote control.

Whether fixed or mobile, the capacity of an ad hoc network is mainly bounded by
individual transmission capacities. In this research, a method to maximize the individua
data transmission rates between all user pairs and the total data transmission rate of a
mobile ad hoc network is proposed. The actua capacity of the network will depend on
the routing, scheduling and relaying of the communicated data, which are not addressed
in this dissertation.

There have been some studies that investigate reliability in ad hoc networks by
addressing data packet routing algorithms. This is an important problem for ad hoc
network reliability. Different routing algorithms have been developed, each trying to

optimize data packet routes by assessing network connectivity [1, 5, 11, 35, 54, 55, 60,
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72, 73, 89]. Detalled aspects of the different routing protocols will be given in the
following sections. However, regardless of what type of routing protocol is used, the first
and most important requirement for communication between any two nodes is having at
least one path linking them, which is the basic definition of network connectivity.
Network connectivity is at a high level in the reliability hierarchy. If a single user or a
part of a network has no connectivity, then data packet routing reliability becomes of
secondary importance. The availability of paths between the nodes depends on network
topology. Since mobile ad hoc networks are formed by mobile devices, they have
continuously changing, dynamic topologies which is a distinguishing feature as well a
challenge [53].

Due to the dynamic connectivity nature of ad hoc networks, special care needs to
be taken in studying the connectivity problem as well as the routing reliability problem.
This dissertation aims to develop a method that will optimize the network topology
dynamically such that the network connectivity is maximized. Network connectivity is a
broad term used to represent different objectives by different researchers. The term
network connectivity is purposely used here, because a special connectivity measure will

be devel oped taking into account the characteristic properties of ad hoc networking.

2.3 Applications of MANET

The most commonly envisioned application of MANET is military
communications including combat, emergency response, search and rescue, maneuvers,

etc. [7, 24, 35, 41, 81]. Besides the commonly envisioned uses of MANET, it can be used

10
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where there is no telecommunications network infrastructure available. This could be
because it has never existed, or there might be an existing infrastructure which is
inoperable due to disaster damage. Rescue operations, rural construction sites, or rural
land survey teams are examples. Ad hoc networks can also be used when the existing
infrastructure is not capable of handling a short-term demand increase. An event area
where tens or hundreds of thousands of people gather is an example [81]. Such a
concentration in a town, in a concert hal, or in a stadium creates a short-term demand
that is beyond the maximum available capacity of the local network infrastructure.
Another important aspect of MANET isits ability to form an independent network within
its users only. This could be useful if the communications need to be secured. For
example, for military operations, without using any existing infrastructure in either
friendly or hostile territory, secure communications can be established between military

vehicles, mobile or stationary teams.

2.4 Routing in Ad Hoc Networks

The definition of routing in a telecommunication network is as follows: routing is
the mechanism of directing data packet flow from the source to the destination. There are
many different routing protocols, and different algorithms under those protocols, for
fixed topology wireline or wireless networks with different constraints and objectives
such as maximum path capacities or minimized costs. Similarly, there are different
routing protocols and algorithms for ad hoc networks, with different objectives. In an ad

hoc network since there is no fixed topology, managing routing is a very important task

11
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to maintain the quality of service (QoS). Routing in ad hoc networks is much harder than
routing in fixed topology networks. There are three main classifications of MANET
routing protocols and each approach has its own advantages and disadvantages, according
to the realized mobile network scenario [53]. These three protocols can be summarized as

follows:

2.4.1 Proactive Routing

Proactive routing algorithms or table-driven algorithms work on the basis of a well
maintained, i.e. frequently updated, routing table kept by every node in the network. The
routing tables are always available and whenever a packet needs to be sent, the source
node will send the packets via the best route found by a certain algorithm. The
disadvantage of this protocol is that due to the dynamic nature of the network topology,
the maintenance of the routing tables consumes a lot of the network bandwidth. Common
examples of this routing protocol are destination-sequenced distance-vector routing
(DSDV) [71], clusterhead gateway switch routing (CGSR) [23], and optimized link state

routing (OLSR) [54].

2.4.2 Source-initiated On-demand Routing

On-demand routing is a reactive protocol, and paths are constructed only when
there is aneed to send a packet. Rather than continuously updating the routing tables, the
source node initiates a path discovery algorithm before sending the packet. When the path

discovery reaches the destination node, the information is sent back to the source node
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and the data packet is then sent via the constructed path. Although the on-demand routing
protocol does not use up vauable bandwidth like the proactive routing, a delay is
incurred while constructing a route from the source to the destination nodes. Some
examples of this type of agorithm are ad hoc on-demand distance vector (AODV) [72]

and dynamic source routing (DSR) [55].

2.4.3 Hybrid Routing Protocols

The first two types of routing protocols have their weaknesses as described in their
summaries. Hybrid protocols have emerged to form a MANET routing protocol that
combine the advantages and minimize the weaknesses of the proactive and reactive
protocols. Zone routing protocol (ZRP) is based on a hybrid approach. A node uses a
proactive type routing for its neighboring nodes within a certain number of hops. Routing

for more distant destinations is done using a reactive path discovery [70].

25 MANET Connectivity

Bettstetter [9] investigates node degree and connectivity characteristics of MANET,
and terms these the two fundamental characteristics. The node degree and connectivity
concepts for MANET are explained in more detail in Section 2.5.3. To give a basic
definition, node degree is the number of links that a node has in the network, and
connectivity is a measure of the total possible digoint paths between node pairs.
Bettstetter defines a simulation model which consists of three stages. First, a total of n

MANET nodes are placed on a two-dimensional simulation area A using a uniform

13

www.manaraa.com



random distribution. Second, wireless transmission is modeled for each node based on
omnidirectional, or circular, transmission with transmission range, R, and a certain path
loss or signal attenuation model. Every user is assumed to have the same transmission
range. Finaly, a third model is defined for the mobility of the nodes, such as random
waypoint or random direction.

Bettstetter represents the MANET as a graph G = (V,E) where vertices set V is the
nodes, and the edges set E is the links formed between the nodes within each other’s
range. More detailed information on how a MANET is modeled as a graph is given in
Section 2.5.3. He develops analytical expressions for the minimum required R value such
that the probability of having no isolated nodes is a high probability P. In that study, the

probability that anodeisisolated is given asin equation ( 2-1).

P(anode has no neighbors) = e prR
(2-1)
where r=n/ A, and similarly the probability that the network is connected is:

2
P(every MANET nodeis connected) = 1- e~ PR

(2-2)

Bettstetter provides the analyses of the transmission range R versus the probability
that the MANET is connected. From his results, it is clearly seen that there is a certain
threshold range value immediately below which the P(every MANET node is connected)
is amost zero, whereas immediately above the critical range the probability is almost
one. Known as the “phase transition,” this behavior is fairly common in many graph

measures [9, 38].
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Similarly, Xue and Kumar [91] studied the number of nodes that each node needs
to have in its neighborhood to keep the network connected. They showed that instead of
some constant magic number, connectivity is almost certainly established if every nodeis
connected to its nearest 5.1774-log(n) neighbors, where n is the number of MANET
nodes. Both of these studies assume uniformly randomly distributed nodes in a certain
area and approach the connectivity in a probabilistic manner.

Cook and Marquez [28] proposed a two-terminal reliability calculation approach
for aMANET with a random waypoint mobility model. The analytical expression for the
expected number of neighbors is used to calculate the probability of link existence and a
Monte Carlo based simulation calculates a two terminal reliability measure. Their results
indicate that the two termina reliability of a MANET increases with increasing node
density, however it is bounded by the square of the node reliabilities.

Bettstetter also analyzes the impact of mobility on the measures he derived for
MANET. However, his basic assumption for mobile node scenarios is that n >> 1, nodes
are always distributed uniformly in the area and A >> R¥p at each time step. Further, all
node movements are independent and not confined to a certain sub portion of the
simulation area. The mobility model that is used in that study [9] is the random waypoint
model in which a node randomly chooses a destination point and moves towards it with a
certain velocity, pauses for a certain time when it reaches the destination and then
chooses the next destination point. This behavior is sufficient to model a completely
random behavior but certainly not suitable for the case of mobile agents whose primary

aim isto anayze the network continuously and move to their next best location.
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2.5.1 Connectivity versus Routing

Although routing is a very important task in ad hoc networking, network
connectivity (which determines the ability of the user nodes being able to form single or
multi hop paths among themselves) is a more fundamental requirement [53]. If there are
no possible links between the source and the destination nodes, communications will be
disrupted no matter which routing protocol is used. This dissertation is primarily aimed at
developing a method that maximizes the connectivity of the network such that
communication disruptions due to link unavailability are minimized. However, the
developed method will also be useful for routing protocols to maintain or generate

routing tables as needed.

2.5.2 Connectivity and Performance Measures

A mobile ad hoc network at any instant can modeled as an undirected graph with
nodes being the vertices and links being the edges, as given in [9]. If any two nodes are
within each other’s range, a link is formed between these two nodes in the ad hoc
network. The principles of graph theory applied to telecommunication networks are also
applicable to MANET. Since a MANET is a dynamic network with changing node
locations, a discrete time model is used to represent the network state at any time t. Let
UN be the set of the user nodes and AN be the set of mobile agents, and UN; and AN; be
the sets of active user nodes and mobile agents at time t, respectively. Let graph G; =

G(Ni,E;) be an undirected graph with n; nodes (vertices) and m edges (links), at timet. At
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any time t, the set N, = UN; E AN, = {1,2,...,n} denotes the set of active nodes on the

network, and set E;={1,2,...,m} denotes the set of established links between node pairs.

2.5.3 Basic Graph Theory

As discussed above, there are some graph measures that are useful indicators of the
state and performance of a MANET [9]. They will be briefly summarized in the

following sections.

25.3.1 Node Degree

The node degree of a node i, denoted by d(i), is the number of neighboring nodes
with a direct link to i. Another definition for the node degree of node i is the number of
links it has. The minimum node degree of a graph G is defined as shown in equation
(2-3).

din (G) = min{d(i)}

"ilG

(2-3)
The average, or mean, node degree of agraph G is:
18 ./
Ureen (G) = —A10I(1)
ni,
(2-4)
which for undirected graphsis equal to:
=20
n
(2-5)
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Thus, the minimum, and the average node degree of graph G; at timet is:

Ay (G,) = mindd (1)}

G,
(2-6)

3

(@)= -2101()
(2-7)
or:

Ay = 2

nt
(2-8)

2.5.3.2 Graph Connectivity

Connectivity is defined either for a pair of nodes, or for the entire graph, or for the
network. A graph is said to be connected if every node can be reached from every other
node by traveling through the links between nodes, and it is fully connected if all node
pairs have links between them. In atypical WLAN or WWAN it is sufficient for amobile
node to have a link to at least one access point or to a base station. In a MANET
however, connectivity is a function of the number and locations of the nodes and the
wireless transmission range [9].

A common way to represent connectivity is the k-connected synonym. If a graph is
k-connected, then every node pair has at least k digjoint paths between them. For a graph
to be connected all nodes should be at least 1-connected, i.e. the links of the graph should

form at least a spanning tree.
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A disconnected graph or an isolated node can result in degraded network
performance. The main aim of the method proposed in this dissertation is to maintain at
least a spanning tree at al times in the MANET. All links in the MANET are assumed
bidirectional, i.e. the data can flow in any direction. Figure 2-2 represents three different

graphs with different node degrees and connectivity properties.

DIRIA.

(@ (b) (©

Figure 2-2 (a) A connected graph, dmin= 1, dmean = 8/5. (b) A 2-connected graph, dpin= 2,
Omean = 12/5. (€) A disconnected graph, din= 1, Omean = 8/5.

2.6 MANET Mobility

The mobility of a MANET has been addressed by researchers in many different
ways. For example, in Shukla s [80] and Camp et al.’s[18] studies, the average velocities
of MANET nodes are taken as the mobility measure. In Ishibashi and Boutaba' s work
[53] the effect of maximum speed is strongly emphasized. Kwak et al. [58] propose a
different measure called remoteness suggesting that the average or the maximum
velocities are insufficient to reflect the movements of the nodes relative to each other.

The remoteness measure that is proposed is a function of the distance between any two
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nodes, and it assigns a greater importance to ones that are just at each other’s range or
near the border.

Ishibashi and Boutaba [53] consider the mobility and MANET topology
relationship using a random waypoint model. Throughout the life of the network, links
are created and broken as the nodes move in and out of the range of one another. There
are different time definitions to describe the life of a link. The first is the optimum
lifetime of the link. Thisis the time from when the nodes first move within each other’s
range so the link can be formed, until the link is broken when they move out of range.
This is the maximum stable and usable period for the link. However, it is not the actual
time that the link is available for use. In order for the link to be available for usg, it hasto
be detected by a node. Similarly, the breakage of the link has to be detected and this
happens when a neighbor does not respond for a certain timeout period. The time elapsed
from the first detection to the link breakage detection is termed the perceived link
lifetime, which usually extends beyond the end of the existence of a usable link. Data
packets sent during that time are wasted effort. A final definition that is described in [53]
is the time the link is first included in a path by the routing protocol. This process may
occur at any time during the link’s lifetime therefore the expected time to failure for the
link, from the arbitrary time of route discovery, is half of the perceived link lifetime.
Here, the term failure is used for the event that the link is lost due to the nodes moving
out of range, not due to an equipment failure.

The quality of a link can be explained as its sustainable data transmission rate,

which depends on the amount of signal attenuation mainly due to the distance between
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nodes. Thisis explained in more detail in Section 4.3.1. Although the node density affects
the transmission quality of the links, the lifetime only depends on the mobility model and
the transmission range. Ishibashi and Boutaba show that average link lifetimes
exponentially decrease with increasing maximum velocity. For a transmission range of
250 m, at a maximum speed of 5 m/s (18 km/h) the links last about 165 seconds on
average, and only 40 seconds when the maximum speed is 108 km/h. These are average
link lifetimes. They report that link lifetime distributions have long but light tails and a
significant weight around near-zero lifetimes. This means that a significant portion of the
links formed in a MANET with randomly moving nodes fail in a very short period of
time.

Similarly, Chu and Nikolaidis analyze mobility versus connectivity of a MANET
[25]. Their analyses reveal that the higher the velocities are, the better the connectivity.
This might seem contradicting at first sight, due to the fact that the average link lifetimes
are expected to be shorter as stated by Ishibashi and Boutaba [53], but the observed
behavior is explained in terms of connectivity. The explanation is that at low speeds,
nodes in weaker covered regions tend to stay longer and thus decrease the overall
connectivity of the network over time. However, with increasing speeds, the link
lifetimes could become shorter but new links are formed as the older ones dissipate, and
the node distribution tends to be more uniform, both contributing to overall better
connectivity. The phase transition phenomena s also seen in Chu and Nikolaidis's paper

[25] with changing wireless transmission range.
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Stepanov and Rothermel [83] proposed an urban scenario simulation for aMANET
to take into account mobility and wireless transmission differences that are realized in
city environments. The mobility model considers movement constraints, obstacles, road
networks and the transmission model considers propagation in city areas. Their study
shows that realistic smulations for urban environments differ from simpler models and
provide a better estimation of urban performance. However, this comes at the expense of
computational complexity and the requirement of detailed data to reflect the physical

conditions of the simulation area.

2.7 Future Location Prediction

There have been a few studies that investigate prediction of future locations of
mobile users. The interest in estimating the future locations of users in wireless
telecommunication networks falls in two main categories; 1) the cell that the user will
enter in cellular networks, and 2) the future geographical location of the user or users, in
ad hoc networks.

Papers that address the first group include: [10, 61, 62, 63, 66, 93]. Papers that
address the latter group include: [8, 30, 67, 84, 85, 86, 89]. Discussion about these studies

are presented below.

271 Cdlular Models

Liu and Maguire model the movement of mobile users within cells as movement

circle (MC), movement track (MT) and Markov chain models [61, 62]. The MC moded is
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based on the assumption that users will eventually return to their initial positions. The
MT model is a uni-directional model, less constrained than the MC model. They use the
MC and MT models to describe the regular or structured movements of the users, and the
Markov chain model to describe additional randomness.

A similar two-level model is used to describe human motion in a cellular
environment by Liu et al. in [63]. The top level isagloba mobility model (GMM) whose
resolution isin terms of cells crossed by the mobile user rather than user coordinates. The
second level is alocal mobility model (LMM) which is used to describe the movement
within a cell, using speed, direction and position information. GMM is a deterministic
model whereas LMM is a stochastic model that interacts with the GMM model. The
GMM is motivated by the fact that the users show some regular patterns during daily
movements.

Yavas et al. propose a data mining approach to extract inter-cell movement history
regularities and combine that with the current trajectory to estimate the next position in
[93]. A similar data mining application to location prediction is proposed by Ming-Hui et
al. in [66]. Bilurkal et al. [10] propose a neura network (NN) algorithm to predict the
next location of users. They emulated 6 weeks of data with 30 observations per day of
(time, x-coordinate, y-coordinate) and trained a NN with backpropagation using the next

x and y coordinates as the output.

23

www.manaraa.com



2.7.2 Adhoc Modds

Wang and Chang [89] propose a mobility prediction model to be used for areliable
routing protocol. Their model is based on the assumption that the position and velocity of
anode is known at sometimet, the path loss is a free-space loss and all devices have the
same wireless transmission range R. A node at (x,y) at time t,, is expected to be in a
circular region with center (x,y) and a radius of w(t;-to) at time t;. By using this circular
region to find the farthest possible point that the node can be at, and assuming a constant
velocity and direction between (t;-1,), the estimated link duration time between any pair
of nodes can be calculated. This information is then utilized to route packets via longer
duration links. The same principles are used by Su et al. and Tang et al. [85, 86].

Ashbrook and Starner [8] propose alearning algorithm for significant locations and
motion prediction with GPS. GPS was used to record data for a period of 4 months in
Atlanta, GA. They only recorded the location data when the subjects were steady. Thus,
the stations, not the motion, is of interest in their model. They use a Markov model with
transitions from each location to another.

Mitrovic [67] proposes a model to predict short term user motion to help vehicle
navigation. A time-delay neural network is developed which allows information about
signa history be available as an input to the NN. He uses longitudinal and lateral
acceleration data gathered from two accelerometers, vehicle rotation data, changes in the
road slope, and GPS position data as inputs.

Creixell and Sezaki [30] propose atime series method with the least squares lattice

(LSL) method to estimate the parameters. The time series to represent the trgjectory are
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v={Vo, V1, Va,..., Vn} and Q={Qo, Q1, Q2,..., Qn}, where Q is the amount of displacement
angle from the horizontal axis, and v is the velocity vector. The prediction model is given
in equation ( 2-9 )and ( 2-10).

Visr=ay (i)vi+ap (i)viatw"’
(2-9)
Q1=a () QM+ & () Q.+
(2-10)

The method does not use the first 20 observations for prediction because LSL needs
about 20 iterations to converge. The prediction horizon is 10 stepsinto the future.

As a summary, it can be stated that the first few papers by Wang and Chang [89]
Su et al. [85] and Tang et al. [86] utilize a simple location and velocity based expected
position to help the routing protocol. The method does not make use of direction, change
in direction nor change in velocity. The significant location learning approached
proposed by Ashbrook and Starner [8] only predicts the next important station that the
user will be in, and does not utilize velocity or direction information. It aso is only
functional over the specific areathat is used for the learning. The NN model proposed by
Mitrovic [67] is aimed at predicting car motion. It is trained only using specific
maneuvers on certain road conditions. However, the proposed neural network approach
can be adapted for a more generalized motion pattern. Although satisfactory results are
achieved, the time series method of Creixell and Sezaki [30] has a time series parameter

prediction problem at every time step, adding to the computational burden.
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In amore recent study, Huang and Zaruba [52] proposed a method that enables non
GPS equipped ad hoc nodes to estimate their approximate locations by using the
information from GPS equipped nodes. This would be advantageous in situations where
GPS equipment or satellite signals are unavailable. Their model involves multiple GPS
enabled nodes. Other nodes on the MANET approximate their locations by using the
known node location data and the signal strength between them to estimate a location

distribution.

2.7.3 Kinematics Approach

Motion is inherently continuous. Where an object stands at a time instant greatly
depends on where it was a moment ago, and is highly correlated with the space it will
occupy moments later. Kinematics is a branch of mechanics which describes the motion
of objects only by means of geographical coordinates, i.e. with no consideration of the
forces acting on the bodies.

The position of an object is described by its coordinates. The rate of change of
position is defined as the velocity and the rate of change of velocity is described as the
acceleration of an object. By using the velocity and the acceleration information, it is
possible to calculate how the position of an object changes.

In this study, a location prediction method based on kinematics principles is
developed for MANET users. The location prediction system isintegrated into the mobile

agent location optimizer and it enables the system to utilize past user location
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information. The details of location prediction using kinematics and its effects on

algorithm performance are shown in Section 3.4 and Section 7.3.2.

2.8 Heuristic Optimization with Evolutionary Algorithms: Genetic Algorithm and
Particle Swarm Optimization

Perhaps the most commonly used general purpose heuristics are evolutionary
algorithms (EA) that mimic the dynamics of natura evolution where the fittest

individuals survive and transfer their genetic information to the future generations.

2.8.1 Genetic Algorithms

Genetic algorithm (GA) is one of the evolutionary computation methods that
researchers use when attempting to find approximate solutions to large, complex
problems. GA was introduced by Holland, and its performance on both combinatorial and
continuous problems has been studied extensively [31, 44, 51, 65, 78].

A genetic agorithm maintains a population of individuals and applies selection,
crossover and mutation to the population over generations mimicking the natural
evolution process. The individuas in the population are represented as a string of digits
or aphabetical characters, synonymous with the genotype. A typical binary represented

multi-variable individual is given in Figure 2-3.
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110010110101101001100...1010110
\ J \ J\ J \ J

Var l Var 2 Va3 ... Van

Figure 2-3 A binary represented multi-variable solution.

In each generation, individuals with relatively better fitness values are given higher
chances to mate with each other and transfer parts of their genotype to the children in the
following generations. The fitness of an individual is correlated to its objective function
value. The correlation should be positive for maximization problems and negative for
minimization problems. To calculate the fitness of an individual, first its genotype needs
to be converted from encoding space to the variable space, or phenotype, using a
decoding function. A binary bit representation for the chromosomes is common among
GA researchers. A typical decoding function from binary to real space is given in

equation ( 2-11).

(X = Xy )~ decimal(c;)

decode(c, ) = 1 i

(2-11)
where ¢ is the chromosome, x,, is the lower bound, x,, is the upper bound of the it
variable, |; isthe length of the ¢, and decimal(c;) is the decimal value of ¢; asin equation

(2-12).

|
decimal () = & ¢, ~ 2/

(2-12)

where ¢ isthej" bit of .
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Populations generally become fitter through the generations as a result of the
mimicked evolution. Initial populations are often created randomly. Search for the global
optimal is conducted by selecting parent members from the parent population and letting
them create an offspring population by combining their genetic information. Combination
of genetic information is done by means of crossover operators. The parent members go
through crossover with a certain crossover probability, p.. The offspring are mutated after
crossover, which is also a natural phenomenon. Parent and survivor selections follow
certain rules, which can differ from one GA application to other. In genera, there are
random, roulette wheel, and tournament selection methods for parent selection. Some
examples of the crossover operators are single-point, multiple point and uniform

crossover. Examples of single point and uniform crossover are given in Figure 2-4.

00102500101110010 00101
: > 00101110010

(@)

0010100101110010 00101001001101
011010101111000

(b)

Figure 2-4 (@) Single point crossover. (b) Uniform crossover.

Survival selection can follow either a generational strategy or a steady-state
strategy. In the generationa strategy the entire population is merged with the offspring

population, whereas in the steady state survival strategy offspring merge with existing
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members in the parent population immediately after being created. GAs are often dlitist,
i.e. the best individual(s) in the population is(are) preserved and usually not mutated from
one generation to another.

Population based heuristics have been applied to dynamically changing objectives
in the literature [14, 15, 92]. Since the movements of mobile network nodes create a
different topology within the proximity of the previous topology in successive time
increments, the change in objective function is also incremental. Further, the new optimal
locations of the mobile agents will be within the proximity of their previous locations due
to velocity and geographical constraints. Once the population is stabilized, GA’s or any
other EA’s response to an incremental change in the objective function is expected to be
relatively fast, benefiting from previous superior solutions [92]. More detailed
information about EAs in dynamic environments is given in Section 2.9, and the analysis

of this behavior can be found in Section 7.3.3.

2.8.2 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population based optimization tool which
emulates the social behavior of species that live in the form of swarms in the nature.
These swarms are capable of exchanging valuable information such as food locations in
the habitat. PSO was developed by Eberhart and Kennedy in 1995 [56]. The swarm
particles in the algorithm communicate and direct the search towards areas in the search

space with better fitness values.
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PSO has many common aspects with evolutionary algorithms. Like a GA, PSO has
a population of randomly initialized candidate solutions. Different than the evolutionary
algorithms, the members of a PSO population do not mate or mutate to create offspring.
Instead, they swarm over the search space by moving in the solution hyper plane while
communicating with each other and using the information from superior individuals in
the swarm as well as their own best positions in the past. The value of their positions are

evauated in terms of the objective function.

2.8.2.1 The PSO Mechanism

A swarm particle changes its velocity at each iteration, or time step, aiming towards
the superior particle in the neighborhood and its best history. This change in the particle
velocity is also weighed by random factors to provide arobust and diverse search.

Each member particle in the swarm is represented by three vectors X, P and V.
Vector X represents the current particle location, P represents the location of the
particle’s historic best fitness and V is the velocity vector that defines the direction and
magnitude the particle will travel if not disturbed. V is used to update X every iteration.
The swarm has a global or neighborhood best fitness location vector, G, which isused in
conjunction with individual P vectors while updating particle coordinates.

Maintaining the G vector relies on a communication scheme within the swarm. As
mentioned above, the G for a particle is the best found in its neighborhood of particles
and G is the globa best if the swarm employs a global neighborhood. Different
neighborhood topologies have been studied in the literature and globa neighborhoods

seem to perform better in terms of computational costs [19].
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The Pseudo code of the PSO mechanism is given in Figure 2-5. In Figure 2-5, the
term w is the inertia factor, c¢; and c, are the cognition and the social coefficients,

respectively, and U(a,b) is auniform random number between [a, b].

Initialize population {
X = U(Xin, Xinex)
V= U(Vrin, Virew)
P=X
}
Do While (Stopping criteria not met) {
V= wV + cpU(0,1x(P -X) + cU(0,1)x(G - X)
X=X+V
if( f(X) is better than f(P) ) then P = X

if( f(X) is better than f(G) ) then G = X

Figure 2-5 Pseudo code for basic PSO mechanism.

The PSO has successfully been applied to problems in the continuous domain. It
has few parameters that require adjustment, which makes the development process
relatively easy and fast. Implementation is also easy due to its simple but robust

mechanism. PSO has also been applied to dynamic problems. Eberhart and Shi [37]
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tested PSO on random error introduced problems with multi variables. They show the
ability of PSO to track the changing objective successfully. Carlisle and Dozier [20]
modified the memory property (P vector maintenance strategy) of the swarm for
dynamically changing environments. When a change in the problem environment is
detected, all memory positions are reevaluated and set to either the old memory or to the
current particle position, whichever is better. Thelr results show that the PSO can

successfully track atime dependent objective function.

2.8.2.2 Enhancing PSO’s Performance

Since the major search component in the PSO is the modification of particle
velocities, controlling the changes in the velocity is a major issue. If left unbounded,
magnitudes of the particle velocities can reach quite large numbers [56]. There are two

main methods devel oped to control the changesin the velocities:

1) Implementing adynamically adjusted inertia coefficient

2) Using a constriction coefficient

The inertia method employs a dynamically changing w coefficient. Initially, wis set

to 1 and is decreased gradually as the PSO iterations advance [56]. With arelatively high

inertia coefficient, the current direction and magnitude of the particle’s motion are

weighed highly. As the iterations advance and the inertia coefficient is decreased,
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changing the direction and magnitude of the particle velocities toward the self and global
best particles become easier.

The constriction coefficient was developed by Clerc in 1999 [26]. The constriction
coefficient K improves PSO’s ability to control the growth in velocity magnitudes. It
scales the velocity updates such that a theoretical convergence is guaranteed. It has been
found that K combined with Vi constraints improved the PSO performance significantly
[36]. The constriction coefficient K and its application to control PSO velocities are given

as

V = Kx[v+j,R «(P- X)+4,R, (G - X)]

(2-13)
J=1R*J,R
(2-14)
i 2 .
< =}_j—2+m for g >4
{1 otherwise
(2-15)

In equation ( 2-15 ), Ry and R, are random numbers drawn from a uniform

distribution between [0, 1].

2.9 Evolutionary Algorithms in Dynamic Environments

In many real world optimization problems, the objective function, the problem

instance or the constraints may change over time, also changing the optimal solution to
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the problem [13, 15, 16, 92]. Yaouchu et al. gives four main reasons that problem

uncertainties might be taken into account:

1) Noise: The fitness function is subject to noise. This can happen due to sensory

measurement errors or randomized simulations.

2) Robustness: The design variables are subject to perturbation after the optimal
is determined. The solution is expected to be robust and still be satisfactory with the

changed design variables.

3) Fitness approximation: The fitness function is very expensive to calculate

exactly. A simpler meta-model is used to approximate the fitness function value.

4) Time-varying fitness functions; The fitness function is deterministic at any

point in time, but is dependent on timet, as shown in equation ( 2-16),

F(X) = fi(X)
(2-16)

Therefore, the optimum also changes over time. The optimization algorithm is
expected to track and locate the changing optimum in each time step. The challenge is to

reuse the information from the previous environments to speed up the solution process.
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The mobile agent location optimization problem in a MANET falls into the fourth
category in the above classification. The successive location problem at each time step
should be solved in real timein an actual application.

In dynamic optimization algorithms, an explicit “solve from scratch” approach can
be time consuming. Using previously gained knowledge about the search space can speed
up the next optimization process. If the new optimal solution is guaranteed to be within a
certain distance of the old one, then restricting the search to only that space will certainly
be beneficia [92]. As described in the previous section, the new optimal locations of the
mobile agents need to be within the proximity of their previous locations due to
maximum velocity and possible geographical constraints. This inherent characteristic
makes the mobile agent motion optimization problem suitable for dynamic environment
solution methods.

Many ways can be devised to transfer knowledge from the previous search space. A
common way is to keep the individuals in the final population of the previous problem
state [14, 92]. However, explicit actions or strategies are needed to increase diversity and
facilitate the shift of the population towards the new optimum when a change in the
environment occurs. There are various ways to accomplish this. The EA can berunin a
standard fashion, but the diversity can be increased for a short period of time after a
change is observed. Some examples of this strategy are hypermutation [27] and variable
local search [88], where the mutation rate is gradually increased after a change in the
environment is detected. Another method is to maintain diversity throughout the runs.

This can be accomplished by accepting random individuals, i.e. random immigrants [45],
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into the population at every generation. Memory-based approaches are useful when the
optimum repeatedly returns to past stages [68, 79].

Some meta-heuristics have been applied to dynamic optimization problems. The
particle swarm optimization (PSO), which is described in Section 2.8.2, is among those.
More information on evolutionary heuristic algorithms for problems with changing
environments can be found in the recent survey paper [92].

Considering al the discussions above, a GA and a PSO with dynamic objective
functions are devel oped as the mobile agent location optimizer heuristics, to dynamically
manage the motion of a number of mobile agentsin the MANET in order to maximize its
connectivity. Detailed model of the proposed method is given in Chapter 3, followed by

the detailed descriptions of the GA and the PSO implementations in Chapter 6.
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CHAPTER 3
THE PPROPOSED MANET MANAGEMENT SYSTEM: PROBLEM

DESCRIPTION AND MATHEMATICAL MODEL

A MANET management system is developed that helps maintain connectivity by
using a number of controlled ad hoc network nodes (agents). Brief descriptions of the
proposed system, the problem it solves, and its solution operators are given in this

chapter.

3.1 Introduction

The proposed method consists of managing the directions and magnitudes of
velocities of a group of mobile agents that have predefined wireless communication
capabilities ssimilar to the other mobile nodes that form the MANET. The agents actually
become an integral part of the ad hoc network. Their movements and thus their locations
are remotely controlled dynamically as the entire MANET topology changes to optimize
network connectivity. To our knowledge, such a method or agorithm for MANET
networks has not yet been proposed.

Since the ad hoc network nodes are mobile, only their current and past location data

are available. The proposed method is designed to make use of the current and the past
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location data available by the use of a globa positioning system (GPS). GPSis a satellite
based system that can provide readily available and accurate position information almost
anywhere on Earth. Many GPS implementations are available including integrated GPS
receivers in mobile phones or mobile network devices [24]. To achieve a red time
response to the changing network topology, a fast and dynamic agorithm is required to
continuously optimize the locations of the mobile agents. This problem is a complex,
non-linear problem that requires a heuristic algorithm with a continuously changing
objective function. A population based heuristic with a time varying fitness function is

therefore applied as the heuristic optimizer.

3.2 TheProposed MANET Management System

There are two main types of MANET nodes; user nodes and agent nodes. User
nodes are the nodes that demand network service. Mobile agents are responsible for
helping the user nodes experience the best network service possible. The user nodes in
the MANET move at their own will and it is assumed that their future positions are
unknown. Also, location data is assumed to be available to the agent control system for
all times that there exists a communication path between a node nodes and the control
system. Thisis technically possible by broadcasting the location information provided by
the GPS. Finaly, every node has a certain wireless connection range and a maximum

velocity.
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3.3 TheMobile Agent Location Problem

The locations of the mobile agents are under control of alocation optimizer that is
responsible for maximizing the performance objective as a function of the current
coordinates of the nodes in the MANET. The objective function gauges performance that
the user nodes experience in terms of being able to communicate with other users and the
speed of the data transmission rates. Only the users are used to assess network
performance and only the mobile agent movements are controlled by the centralized
optimizer.

The problem, which is formulated below, is a hon-linear problem and is appropriate
for a heuristic algorithm. Heuristic optimization algorithms need an objective function
that responds well to the decision variables. Measures such as minimum node degree or
connectedness usualy show sudden changes in certain regions of the search space,
depending on the graph’s characteristics. These measures typically show a steady or flat
behavior over large portions of the search space. This is a phenomenon known as phase
transition as mentioned earlier [38]. In order to overcome this issue, an objective function
is needed that is responsive to small changes in mobile agent locations and that also
reflects network connectivity and performance. This is accomplished using a maximum

flow approach as detailed in Section 3.3.1.

3.3.1 TheMaximum Flow Analogy

In awireless network, alink’s performance depends on the signal strength, whichis

afunction of the link distance and some external factors. In general, the link distance and
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signa strength, and thus the link data rate, are negatively related. The wireless IEEE
802.11 standard is capable of linking MANET nodes [41]. Using this protocal, it is
technically possible to create multi-hop networks that cover several square kilometer
areas [24]. The 802.11 standard operates at 2.4 GHz, or for some applications at 5.0 GHz.
The signal attenuation for 2.4 GHz in free space environments is given in [64], as in

equation ( 3-1).

Path Loss = 32.4 + 20xlog(f) + 20¢log(d;)
(3-1)
where f is the frequency in megahertz (MHz), and dj; is the distance between nodesi and |

in km, and Path Lossisin decibels (dB).

The path loss modedl is used along with a product specification sheet of a wireless
access point manufactured by one of the industry |eaders to calcul ate the data transfer rate
versus distance [69]. The path loss versus datarate chart is given in Table 3-1.

Table 3-1 Path Loss verus Data Rate
Datarate (Mbps) Receive Sensitivity (dBm)

54 -5
48 -76
36 -80
24 -84
18 -88
12 -90
9 -90
6 -93
2 -93
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If anormalized wireless transmission range is considered, equation ( 3-2 ) provides

areasonable normalized data rate estimation for location optimization purposes.

DataRate(i, j) = (1+ golt-09) )'1
(3-2)
where d;; is the Euclidean distance between nodesi and j.

The function given in equation ( 3-2 ) may not be the most accurate estimation of
the normalized data rates at intermediate distances, but the path loss and the data rate
estimation models are al estimates assuming constant interference and certain
environmental conditions. Also, technical capabilities such as antenna reception of
devices differ. The device that is presented here is just example. It is expected that the
manufacturer’s specification curve in Figure 3-1 will shift left or right for different
products. This is why a general centralized estimation curve is devised. The data rate
function conforms to the basic requirements of a normalized distance versus data rate.
When the distance is close to zero, the normalized data rate should be close to one, and
when the distance is close to one, i.e. the distance is close to the wireless transmission
range, the data rate should be close to zero. Also exponential decrease of the data rate
occurs as the distance increases, as observed in practice. The graph of the data rate
estimation function is given in Figure 3-1 with comparison to a device manufacturer’s

specifications.
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Figure 3-1 Normalized distance vs. normalized datarate, range = 450 m.

At any time t, a MANET is modeled as a transportation network with flow
capacities equa to the data rates of the wireless links. An intuitive first measure is then
the maximum flow values between the pairs of nodes. The maximum flow values
between every node pair give a good sense of the overall network performance. Trying to
maximize the minimum of those maximum flows between every user pair is aresponsive
objective function, and is suitable for the mobile agent location optimizer. The maximum
flow problem is a well known network optimization problem and there are various
algorithms readily available to optimally solve it, including ones in polynomial time [2,

40]. Maximizing the minimum of maximum flow values between user node pairsis very
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similar to a problem that exists in the literature, the all-pairs maximum flow (or
minimum-cut) problem [2, 6, 49, 50].

Let’s consider a capacitated network G; = (N;,E;) with a non-negative capacity uijt,
associated with each link (i,j) at time t. Further, two specia nodes in network G; are
specified; a source node S and a target node T. The formulation of the maximum flow

problem between the source Sand the target T at timet isasfollows:

MaxFlow(G;,ST) = Maximize f

Subject to
i f fori =S,
ax - ax=t0 “iTN,-{SandT}
(a1} {iG)TE} 'JI:_ f fori=T
(3-3)
Of x; £uy
(3-4)

where x;; is the amount of flow from nodei to node j and ujj; is the capacity of link (ij) at

timet.

3.3.2 The Mathematical Mode

Notation

UN; the set of user nodes at time t

AN; the set of mobile agent nodes at time't

N the set of all MANET nodes at timet, N, =UN, E AN,
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to
Rit
(Xit.Yit)

XY:

XYdestin

(Xmi ns Xmax)

(Ymi n Ymax)

lit

the number of mobile user nodes at time't, [UN, |
the number of mobile agent nodes at time't, |AN, |

the total number of MANET nodes at timet, [N, |

the set of links between all MANET nodes at time t

initial time

the wireless connection range of the i node at time't

x and the y coordinates of thei™ MANET node at time't

{(%Yi) : iITNg , the set of x and y coordinates of the MANET
nodes at time't

{ (Xidestin,Yidestin) - ] TUN} , the set of x and y coordinates of user node
final destination points

x-axis boundaries

y-axis system boundaries

rotation angle (rad, counter clockwise) from the x-axis of the i
mobile agent at timet

the speed of the i mobile agent at time't

the maximum speed of nodei user or agent
1if there exists alink between (i,j) at timet, O otherwise

the capacity of the link between (i,j) at timet, i.e. DataRate(i,))

uniformly distributed random number between a and b

1if there exists a path between (i, j) at timet
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M a big enough number for computational use

For any time t, and set XY; = {(%wYi) : i INg}, the graph G, = (N,Ey) is formed as
follows:

11 if R 3dy,
S %0 otherwise

and Ri 3 dm

(3-5)

wherei,j T N; and dj; isthe Euclidean distance between nodesi and j a timet as given in

equation ( 3-6).

dijt = \/(Xlt - th )2 + (yit - yjt )2
(36)

The formation of alink is a function of the signal attenuation between the nodes,
and can depend on factors other than distance. In that case, the proper attenuation model
will replace equation ( 3-2 ). The remainder of the model will not be affected. The
mathematical model for the mobile agent location optimizer is then written as given in

equations ( 3-7) through ( 3-9).
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O,= min {MaxFlomG, i, j): MaxFlowm(G, ,i, ) > 0}

i, TUN,:j>i

a MaxFlow(G, i, j)

_ i, JTUN:j>i
0O, =

Ny X(nu - 1)/2

_& o 0
03‘§ azijtéxM
i,/TUN:j>i g

Maximize O, + O, + O,

(3-7)
Subject to
Of£ri£2p "iTAN,
(3-8)
O£ Vit £V " TAN
(3-9)

, = i1 if thereisapath between thei™ and the j™ user at timet,
i

it . i, j TUN,
0 otherwise

3.3.3 The Objective Function

The term O, in equation ( 3-7 ) is the user pair with the worst possible maximum
flow vaue. O, is the total maximum possible flows between all user pairs, scaled down
by the maximum number of possible direct links among the users. This scaling ensures
that O, is not given more importance than O;. Finaly, the connectivity term O3z ensures
that no communication path between a user pair is sacrificed for better O, or O, vaues.

This gives connectivity the greatest importance among the three factors.
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An agorithm is coded for the calculation of the maximum flow value between all
user node pairs and is invoked during each objective value calculation. The maximum
flow between the pairs of nodes is calculated by an implementation of the highest-label

push-relabel agorithm. The push-relabel algorithm was proposed by Goldberg and
Tarjan [43]. Cheriyan and Maheshwari [22] show that the algorithm runs in O(n%/ﬁ)

which is a tighter bound than the O(n3) which Goldberg previously stated [42]. The

implemented version is the most efficient maximum flow algorithm in practice [2] and is
available from the BOOST C++ libraries, which is a peer-reviewed, freely available
software library collection [12].

The MaxFlow agorithm is caled to calculate the flow between every user pair
unless a direct link exists in between with a larger data transmission capacity than the

user pair with the current lowest maximum flow. The Pseudo code is given in Figure 3-2.

The F"" and F,™ are used to calculate the O; and O, values in the objective function.
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Start{
Set F™ =0
Set F'" =M
for (SinUN;=1tony-1){
for (TiNnUN;=S+1tony){
If (est=1AND us7> F"" ) then {

FtTOt — FtTOt + US,T

}
Else{
Fsr = MaxFlow(G,ST)
FtTOt - FtTOt + FST
If (0<Fsr< FM") then{
FtMin - FSI'
}
}
}
}
}End

Figure 3-2 The pseudo code for the components of the objective function calculation

In the worst case, the MaxFlow(G,ST) agorithm is executed for a total of
n, (n, -1)/2 times. The all-user-pairs maximum flow caculation is made more efficient

by excluding node pairs that are guaranteed to have a larger flow than a known lowest

maximum flow pair.
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3.3.4 TheMobile Agent Veocity Constraints

There is an important advantage of implementing a polar coordinate system when
optimizing the mobile agent relocations. If the rectangular coordinates of the agents are
taken as the decision variables, satisfying the velocity constraints would require
calculation of Euclidean distances and taking necessary measures within the algorithm
such as penalization of unwanted or infeasible solutions. On the other hand, using polar
coordinate components for the direction and magnitude of agent velocity vectors resolves
thisissue.

The velocity vector rotation r; bounded by [0, 2p] and the magnitude v; bounded by
[0, Vmax] alow the search method to move the mobile agents freely within a circle of
radius Vmax, thus automatically complying with the velocity constraint. The Cartesian
coordinates at time (t+1) can then be calculated as given in equations ( 3-10 ) and

(3-11).

Xi(t+1) = Xit + COS(rie) * Vit "ITAN

(3-10)
Yige) = Vit + SIN(ri) * Vie "ITAN

(3-11)

Once the Cartesian coordinates of the mobile agents are known for time t+1, then
the graph G, can be drawn and its connectivity and data flow capacity properties can be

calculated for the objective function.
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3.4 Future Location Prediction Using Kinematics

Since the MANET users envisioned in this study are allowed to move freely within
no preset boundaries or paths, an accurate and practical future position estimation method
is developed by making use of the laws of kinematics. The only data needed for the
future position prediction of an ad hoc user is its position history from three time steps
back. With position data at each time step from time (t-3), it is possible to calculate the
rate of change of acceleration, which is equivalent to the third derivative of the position.
Any older time observations do not affect the practical accuracy of future location
prediction. The GPS systems that are assumed to be available to al MANET users
provide accurate position information that is used by the location prediction method. The

components of the kinematics based |ocation prediction method are given below:

iz = (X’ y)t—Z - (X1 y)t—S

(312)
Vi = (X’ y)t—l - (X’ y)t—2
(3-13)
Vi = (X’ y)t - (X’ y)t—l
(3-14)
a_, = Vi E);/t—l
(3-15)
a_,= Vt—l[;tvt—z
(3-16)
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_a,-a.,

P2 = g

(3-17)
& =a_, +Da,_, *Dt

(3-18)

Vi, =V, + 8, xDt

(3-19)
Dxy, =V, +%é[th

(3-20)
XY.5 = XY, +Dxy,

(3-21)

In the formulations of equations ( 3-12 ) through ( 3-19), v; indicates the calculated
velocity for time t, a; indicates the change in velocity, i.e. acceleration, between time t
and t+1. D& is the rate of change of acceleration between t-1 and t. Finally, Dxy; is the
change in x and y coordinates, and XY,}, isthe set of predicted x and y coordinates at time

t+1.

Set t = current time

for (repeat = 1:H ){
XY,2, = XY+Dxy;
XY, = XY
t=1t+1,

Figure 3-3 Pseudo code for predicting the location at time (t+H)

ol Lal Zyl_i.lbl
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Figure 3-4, Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8 represent example
cases of future location prediction of a single user in a time frame of 100 time steps for
prediction horizons (H) of 0, 2, 4, 6 and 8 time steps, respectively. An H value of 0
means no prediction is performed.

In Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8, the trgjectories marked by +
show the predicted locations of the user. Increasing prediction error is observed clearly as

H increases from 2 to 8 time steps.
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Figure 3-4 Redl trgectory (H =0)
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Figure 3-5 Location prediction withH = 2
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When the mobile agent location optimization is done with future location data, two
minor changes to the algorithm are necessary. One is the conversion of the velocity
constraints into travel distance constraints for a time span of H. Thisis required because
the system with future location prediction tries to relocate the agents from their positions
a time t to their optimized locations at time t+H. The second modification is the
interpretation of the result at t+H and its application at time t+1, which is where the
agents are going to be deployed next.

The velocity constraints of mobile agents are converted to travel distance
constraints as shown in equation ( 3-22 ), and the coordinates of the mobile agents at time

t+1 are calculated according to equations ( 3-23 ) and ( 3-24).

O£ Vit £ Vi = Vi, ¥H "iTAN

max;

(3-22)
Xit+1) = Xit + COS(Iit) * Vie / H

(3-23)
Yier1) = Yie + SIN(rie) * Vi / H

(3-24)

In equations ( 3-22 ), ( 3-23 ) and ( 3-24 ), the maximum travel distances that the
mobile agents can cover are calculated. Then, the optimized movement at H time steps is
scaled down to a single time unit by keeping the direction constant and scaling the travel
distance down by H.

In this chapter, the mobile agent location problem is defined and modeled as a

maximum flow problem variant. An objective function that reflects MANET connectivity
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and overall data transmission speed, and which is sensitive to small changes in mobile
agent locations is devel oped.

The agent velocity constraints are successfully handled with the use of polar
coordinate transformations. This allows any heuristic algorithm to perform an effective
search without violating velocity constraints.

The results of the kinematics based future location prediction are satisfactory.
While the prediction error is expected to increase as the prediction horizon increases, the
mobile agent location optimization is found to benefit from the additional information
gained by a modest prediction horizon. A prediction horizon, H, of 4 time steps is found
most beneficia. Analysis of the effect of prediction horizon on agent location

optimization is given in Section 7.3.2.
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CHAPTER 4
A SPECIAL GENETIC ALGORITHM WITH NON-DETERMINISTIC

BINARY DECODING FOR CONTINUOUS PROBLEMS

For a continuous domain, a genetic algorithm (GA) is usualy encoded using a
binary string because of simplicity and established common use. However, when a
continuous domain is represented using a binary string only a finite number of discrete
points are actually represented [44]. The number of represented discrete points relates to
the number of binary digits so the length of binary string defines the resolution of the
binary to continuous domain mapping, as well as the precision of the returned solution.
For a problem with 100 variables, the required number of binary digits for a precision of
six digits after the decimal point can reach thousands. For such problems, the
performance of GAsis quite poor [65].

Various approaches have been developed to address the representation precision
problem [59, 76]. A GA that uses areal number coding can be used but requires different
crossover and mutation operators [65]. Also, the theory of genetic search is currently

better established for binary string representations than for real representations [65].
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4.1 Background

A few studies focus on the binary representation resolution deficiency. Schraudolph
and Belew [76] introduced a method, dynamic parameter encoding (DPE), which
repeatedly improves the precision by re-mapping the genes to promising smaller search
regions and thus searching a finer resolved section. DPE divides its search interval into a
certain number of sections and zooms into a“good” region that is identified by statistical
information collected during previous generations. Kwon et al. [59] recently proposed a
similar algorithm, the successive zooming genetic algorithm (SZGA), using continuous
zooming factors. In their method, the search space is zoomed around the best point of the
last 100 generations. Both methods sacrifice some portion of the search space as
evolution progresses, in order to achieve better resolution. This might result in loss of the
search space that contains the global optimum.

The method proposed here enables a GA to search the regions that are left out by
conventional decoding functions as a result of finite resolution. Binary strings are
decoded with a small Gaussian perturbation instead of being decoded on the same
discrete points every time. This enables the GA to search the region between two
adjacent discrete points of a conventional decoding. The non-deterministic decoding is
coupled with a mapping rearrangement mechanism that continuously uses the
information gathered from GA’s evolution such that the best known solution is the
expected decoded value of the corresponding best chromosome.

The proposed algorithm will be referred to as the non-deterministic binary

decoding GA, or NDBGA, in the following sections. NDBGA is introduced and its
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detals are given in Section 4.2. Tests and analysis of its performance over a variety of
test functions, as well as comparisons to DPE and SZGA are presented in Sections 4.2.6

and 4.2.7.

4.2 NDBGA Algorithm

NDBGA is a binary coded GA for the optimization of continuous multi-
dimensional functions. Details on the modified binary decoding function and other

NDBGA operators are explained in this section.

421 Motivation

When GAs are used for continuous optimization problems, the parameters are often
encoded as binary strings. A typical binary encoding/decoding scheme works as follows;
let x; be the i variable of a function in a continuous search domain. A binary string
chromosome of length |, used to encode x; will represent 2' discrete values of x;, starting
at its lower bound and ending at its upper bound. Thus, the search space for X is divided
into 2-1 intervals. Conventional decoding, or mapping, from binary to continuous space

isdoneasgivenin equations ( 2-11) and ( 2-12).

4.2.2 Non-deterministic Binary Decoding

The NDBGA agorithm uses a decoding function that maps a certain chromosome
not to one specific point, but to a neighborhood or region around it, by adding a Gaussian

offset with zero mean to the decoded value. This is identical to adding a Gaussian offset
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to the lower bound of the variable that is used in the decoding function and then decoding
the variable using this new lower bound. Every chromosome is assigned a specific areain
the search space and these areas do not overlap. In a two-dimensional search space
(Figure 4-1) each grid intersection point represents the center points of the rectangular
regions that chromosomes are responsible for. This can be better visualized in Figure 4-2.
In Figure 4-2, chromosomes ¢, and ¢, are given chances to represent points in the dotted
and shaded areas, respectively. With conventional decoding, only the center points would

have been represented.

4

Figure 4-1 Two dimensional binary coded search space

g
Iy
L . . 4 .
IaaEE .
SN (¥ Ch
L . . 4 .

8]
Figure 4-2 Regions represented by chromosomes ¢, and ¢, in NDBGA, atwo

dimensional case
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Let ¢ be the binary chromosome string for the i" variable and let rs be the decoded
real vaue of ¢. With non-deterministic decoding, ¢ represents a Gaussian random
number with mean rg, and a standard deviation of Kh;, where h; is the resolution half

width of thei™ variable given by equation ( 4-2 ) and K is a user defined scaling factor.

(Xub, - Xm, )
W = ————

2 -1
(4-1)
hi = ﬂ
2
(4-2)
where;
Wi istheinterval width of thei'" variable
Xib isthe lower bound of the i variable
X is the upper bound of the i variable

l; is the chromosome length for the i variable

The NDBGA decoding function can be derived by implementing a dynamic lower
bound value and a Gaussian offset in a conventional decoding function as in equation
(4-3).

(X —%,) decimal (g)
2 -1

ndecode(G) = +Ih + N(O,Kh)

(43)
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where;

Xy isthe lower bound of the i" variable

Xut is the upper bound of the i variable

G is the chromosome for the i variable

l; is the chromosome length for the i variable

decimal(c)) isthedecimal valueof ¢

Ib; is the lower bound of the i variable used for decoding
N(O,Khy) is a Gaussian random number with mean 0, and standard deviation Kh;
K is a user defined constant, used to scale the standard deviation of the

Gaussian offset

h istheinterval half-width of the i variable

Figure 4-3 illustrates the Gaussian mapping onto the search space. Each peak is the

expected decoded value of the corresponding chromosome. The X; and X, axes are

variable axes and, the pdf is the Gaussian probability density function value.
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Figure 4-3 Gaussian mapping from binary representation grid to the search space
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Initially, the peak points correspond to the points that would have been represented
by the regular binary mapping. As NDBGA progresses, information from the individual
with the best fitness in each generation is continuously used to update the decoding lower
bound values so that the optimum peak point in the updated mapping correspond to the
best known solution. Thus, the decoded value of the best known chromosome will aways
be based on the best known solution so far. This process is referred to as the mapping
rearrangement property of NDBGA. Change of expected values of chromosomes can be
visualized as a geometrical rearrangement of the binary representation grid.

The mapping rearrangement is determined by the best known individual. This is
illustrated in Figure 4-4 for atwo dimensional case. The black grid represents the initial
binary mapping and the gray grid represents an intermediate stage, which has been
rearranged to position the superior individual S at its corresponding grid intersection
point. After the rearrangement, if the chromosome of Sis decoded with zero offsets, point

Swill be precisaly located.

Figure 4-4 Graphical representation of binary mapping rearrangement for the 2D case
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The binary to real mapping is rearranged continuously as the population evolves. It
is important to note that rearrangement does not alter regions that the chromosomes are
responsible for. If we consider Figure 4-2, if the best known solution is in the dotted
region, it will be represented by c,. Similarly, if it is in the shaded region, it will be
represented by cy, €etc.

The mapping rearrangement is done by updating elements of 1b whenever a solution

that is superior to the best known is created. The procedure is described in Section 4.2.3.

4.2.3 Mapping Rearrangement Mechanism

A binary mapping can be rearranged by altering the variable lower bounds vector,
Ib. When an improvement on the best-known solution is realized, the |b vector is updated

according to equation ( 4-4).

(1B) oy =10 )y + Ng ™

(44)
where;

(161 new is the updated lower bound of the i™ variable

(Ibi)old is the previous lower bound of the i variable

N is the Gaussian offset that was generated for the i"" variable of the superior

individual
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4.2.4 NDBGA Algorithm Structure

While the non-deterministic decoding idea could be used with any binary GA, the

onethat is designed for experimentation is described here.

Notation

varsize the number of variablesin problem

I the length of the binary string for avariable

m population size

q tournament size

Neouple the number of parent couples

) total number of offspring created (£ =2~ Neoyple)
Pc crossover probability

bm bit mutation probability

| [ the number of worst individuals replaced by offspring
PopBest best individual of the current population

BestSoFar best individua found so far

Ni Gaussian offset generated when decoding the i variable of an individual
Each individual in NDBGA has atotal of (varsizerl) genes as its genotype, and also
stores a real value for each of its variables for the mapping rearrangement mechanism.

Initially all members are generated randomly by assigning O or 1 to their binary genes,

with equal probabilities.
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By changing the neoue parameter, NDBGA can behave as a steady-state GA, a
generational GA, or anything in between. Each couple contains two parents. The same
parent member can appear in more than one couple but it cannot appear more than once
in one couple. Parent selection is done using a tournament selection of size . Each
couple produces two children by crossover with a probability of p.. If a couple is to
undergo crossover, either auniform crossover or a single-point crossover takes place with
equal probability. Every child is subject to mutation with a bit mutation probability of by,
Each of the bits in a child’'s chromosome is flipped with a probability of by, Figure 4-5

shows the flowchart of the NDBGA.
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START

Initialize mindividuals
Initializelb as
b = i
Evaluate mindividuals
using ndecode(c)

v

Pick 27 Neoyple parents

Generate [ offspring

Evaluate 1 offspring
using ndecode(c)

v

Replace worst 1 replace individuals

with best 1, replace offspring

PopBest better
than BestSoFar?,

NO

NO
Stopping criteria met?

YES

Update
Ib

Figure 4-5 NDBGA flowchart

Every time an individua superior to the current BestSoFar is generated, the Ib

vector is updated.

4.25 Gray Coding

Gray coding is a commonly applied method to transform a binary mapping such
that adjacent points in the search space differ by one bit only in genotype. This eliminates

the problem of small mutations producing solutions far away from the origina point [44,
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65]. NDBGA can be used with any binary encoding scheme, either Gray coded or not.

Gray coding has been shown to improve GAs' performance on many types of continuous

problems [21]. There are many different ways to Gray code binary strings and below is

the conversion rule used in this study;

Let ¢, be the binary chromosome string, ¢y be the gray coded chromosome, and | be

the chromosome length. Start with assigning the higher ordered bit in Stepl.

Sepl
Sep2
Sep3

Sepd
Sep5

Ch = Cgl
i=1-1
Cy = (le )Cgi

decreasei by 1.

Goto Sep3if i > 0, otherwise stop.

Where ¢, and ¢, arethe i elements of ¢, and Cg, respectively.

426 TestingNDBGA

NDBGA was tested on a set of 20 test problems, including the test sets used by

Schraudolph et al. for DPE and test sets used by Kwon et al. for SZGA to see how

NDBGA compares to these algorithms [59, 76]. The remainder of the test suite is

compiled from well known multi-modal and multi-dimensional continuous optimization

problems. The complete test suiteisin Table 4-1 and Table 4-2.
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All problems are multi-dimensional and many have numerous local extrema that
challenge search algorithms. All problems were tested for minimization. Functions F1
through F5 are De Jong'’ s test functions and were used by Schraudolph et al. to test DPE.
Function F5 was also used by Kwon et al. Functions F6 through F14 are the remainder of
Kwon et al.’s functions used to test SZGA. F4 in Kwon et al.’s paper could not be tested
due to its unbounded variables.

Function F1 is a convex three-dimensiona parabola with a minimum at the origin.
It isarelatively easy function to optimize. F2 is awidely studied test function which was

first proposed by and named after Rosenbrock. It is a non-convex, unimodal function
with a deep parabolic valley along the curve x, = x> [31]. F3 is a 30 dimensiond,

discontinuous step function. F4 is a convex and unimoda 30 dimensiona quadric
function with Gaussian noise. It is useful to test the performance of an optimization
algorithm under the presence of noise. F5 is known as Shekel’s foxholes [31]. It is an
interesting two-dimensional multi-modal function with 25 local minima. F6 was
proposed by Bohachevsky et al. and is a two-dimensional function with numerous local
minima and a globa optimum at the origin [39]. When (xg,%) is far from origin, the
quadratic terms of F6 dominate the cosine terms, thus giving an overall quadratic shape
to the function [39]. F7 is the second function in Kwon et al.’s test suite. It is a multi-
modal function with 16 local minima. F8 is commonly known as the Branin-RCOS
function and has a global minimum at three different locations [34]. F9 is known as the
six-hump camelback function and has three conjugate pairs of local optima, one of which

is the global minimum [87]. F10, known as Goldstein-Price function, has four local
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minima and a global minimum [87]. F11, also known as the Shubert function, has 760
local minima, 18 of which are global minima [65]. F12, dso known as the Colville
function, is a 4 dimensiona function with a global minimum at (1,1,1,1), a stationary
point at (1,-1,1,-1), and further loca minima. A very narrow valey runs from the
stationary point to the minimum [78]. F13 and F14 are the last two test functions in
Kwon et al.’s test suite. They are both 20 dimensiona functions with globa optimal
values of 0. The remainder of our test suite consists of avariety of functions ranging from
2 to 30 dimensions.

F15 is a 2 dimensional, highly multi-modal function proposed by Schaffer [75].
F16 and F17 are 5 and 20 dimensiona variants of the generalized Rastrigin function,
respectively. The function was first proposed by Rastrigin as a 2-dimensional problem,
and generalized by Rudolph as a test function for distributed paralel evolutionary
strategies [77, 87]. F18 is a 30 dimensiona version of the sphere function F1. F19,
known as Schwefel’s problem, is a continuous and unimodal problem [77]. Finally, F20
is another function by Bohachevsky with 10 dimensions. It has numerous loca optima
and a global optimum of 0. Optimizing F20 requires a simultaneous minimization of 10

multi-modal functions [39].
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Table 4-1 Test Functions F1-F10

Theoretical
Fn. | Equation Dim.| Variablerange optimum
()
3 , f*=00
F1 | &% 3 [-5.12,5.12] at
i=1 x*=0
) =00
F2 | 100(x° - X,)? + (1- %)? 2 | [-2.0482048] at
=1
¥ F* = -30.0
i at
F3 | A exl 30 [-5.12,5.12] %+ T[5.12,
i=1 _5)
= 0.0
3(‘;) . 4 . (underlying
Fa | Qix® +Gaussian(0,) 30 | [-1.28,1.28] function)
i=1 a .
x* =
. -1 . —
2 Ba 2 g0 fr =
F5 | 0002+ Qi+ Q% -a)°% - 2 | [-65.536,65.536] | %008
§ j=1 i=1 ﬂ B X* =-32

a__(?-32 -16 016 32 -32-16 016 32 -32 -16 016 32 -32 -16 0 16 32 -32 -16 0 16 32U
_3-32 -32-32-32-32-16-16-16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 3ZH

*=0.0

F6 | x,2 +2X,° - 0.3c0s(3px,) - 0.4cos(4px, ) + 0.7 2 [-1.28,1.28] a
X* =

f*=-
16.0917200
F7 [cos(prl) +cos(2.50%;) - 2.1]’ [2.1— cos(3px,) - cos(3.5px2)] 2 [-1,1] at
(0.4388,
-0.3058)

=
0.3978873

a
cis | (2l
X, 1[0,15] (3.142,
2.275)
(9.425,
2.245)

51 , 5 ) 1
F8 (XZ—FXl +;x1—6) +10(1—§)cos(xl)+10 2

fx = -
\ 1.0316285
2 0 at
Fo | C4-2.02 + 21552 4y x, + (42 - 4)X2 2 [-5,5] (0.08983,
35 -0.7126)
(-0.08983,
0.7126)

F10 2 [-2,2] at

+ (% + %, +1)° (19 - 14%, +3x2 - 14X, + 6% X, + 3X2 )}’ f=30
0+ (2% - 3%, )? (18 - 32x, +12%2 + 48X, - 36X, X, + 272 )} ©,-1)
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Table 4-2 Test Functions F11-F20

Theoretical
Fn. | Equation Dim.| Variablerange optimum
()
~ ~ " fr=-
T3 ¥ 13 , R 186.7309088
F11 | f@icos((i +Dx +i)y” @ jcos((j +Dx; + j)y 2 [-10,10] a
i= - ¥ (-1.425,
Tim b Tim b -0.800)
2
100X, - X (1-x)? +90(x, - X2 ) +(1-x3)* + f* = 0.0
EF12 ( 2 1) l) ( 4 3) ( 3) 4 [_10,10] a
10.((x, - 1)2 + (x, ~1)2)+19.8(¢, - 1)x, - 1) X1
19 , o) f* = 0.0
o @ X1 +L x“+1)U
F13 aS(X.2 )( 1) + (Xi2+1)( )L;. 20 [-1,4] at
i=1 u x*=0
]1 2 o =00
F14 0sin?(px, ) + a[x - + 10sin (px,+1))]+ (%0 -2y | 20 [-10,10] at
b =1
2
sm X2 + X -05 f*=0.0
F15 6 W+ x ) 2 [-100,100] at
0 (0,0)
|5l0+0001 (% + X, )J
3, =00
F16 a[Xi - 10cos(2px )+10] 5 [-5.12,5.12] a
i=1 x*=0
3 f* = 0.0
F17 é x” -10cos(2px, )+10] 20 [-5.12,5.12] a
i=1 x* =0
2, f* = 0.0
F18 i 30 [-5.12,5.12] at
i=1 *=0
Qe v? f =00
Fl9 | Qtaxt 20 | [-65.536,65.536] at
i=1 § j=1 H x* =0
i3/, (i
1 1a(xi +2x2, - 0.3cos(30x; ) cos(4px;,, ) + 0. 3)+| =00
F20 | —1igy y 10 [-50,50] at
10y 1 X* =0
b

General performance measures that are considered can be listed as; the average

number of function evaluations before the population best reaches the global optimal
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within a tolerance limit, the standard deviation of number of function evaluations, the
objective value of the population best, the average objective value of the population best,
and the standard deviation of the objective value of the population best. All of the
statistics are calculated over 20 repetitions with different random number seeds for each
function.

For fair comparisons with DPE and SZGA, NDBGA was limited to the
corresponding number of function evaluations, where applicable, for test functions F1
through F14. For all other results provided, the function evaluation limit is set to 500,000
for each run.

It iswell known that GAs generally require larger population sizes as the number of
variables increase, for better performance. After preliminary experiments, the population
size of NDBGA was set to 30 for functions with less than 10 variables, and to 100 for
others. Using a generationa strategy provides better diversification and performed well
on problems with less than 10 variables but it greatly decreased the convergence ability
for larger problems. An elitist generational strategy was used for problems with less than
10 variables, and a steady-state strategy was employed for the larger problems. A fixed
bit string length of 8 was used for all test functions, unless indicated otherwise. Other

fixed parameters related to the evolution dynamics are given in Table 4-3.

Table 4-3 NDBGA Population Parameters

Population ~ Number of Tournament  Offspring

size couples size size Fepiace Pc bm K
(/77) (ncouple) (Q) ( I)
30 15 2 30 29 0.85 0.05 0.050
100 1 2 2 2 0.85 0.01 0.001
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4.2.7 NDBGA Performance

NDBGA performed satisfactorily throughout the entire test suite Table 4-4 and
Table 4-5 summarize the performance comparisons of NDBGA with DPE and SZGA on
test functions F1 through F5 and F5 through F14, respectively. Both tables are structured
the same way.

Table 4-4 presents the best and the average results of NDBGA aong with the
average results of DPE. NDBGA performs at least as good as DPE except for F4, the
noisy problem. It is not clear from Schraudolph et al.’s paper if the reported values of F4
were noise-free or not. NDBGA'’s performance measures for the noisy F4 function is
calculated by using the noise-free values of the function since it is the underlying
function that is optimized. A completely noise-free version of F4 was also tested and
presented along with the original version.

Table 4-5 presents the best and the average NDBGA results in comparison with best
results reported for SZGA [59]. Again, NDBGA performs at least as good as SZGA with

the same number of function evaluations allowed.
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Table 4-4 Results for F1-F5 Compared With DPE

o Thf—:«qr atical '\mg?g |:)f DPZE r:.msa NDBGA resulf‘
minimum evaluations asgragljgn Population best populva(tair gﬁ% -
F1 0.0 12,000 1x108 <1x10% <1x10%
F2 0.0 6,000 3x10%<DPE<1x10 2.1x10® 1.66x1072
F3 -30.0 4,000 1x1072 -30.0 -30.00
F4P 0.0 10,000 3x10 5.1x10* 5.16x10™
F4° 0.0 10,000 Not available 2.42x10™ 2.77x10™
F5 0.9980038 18,000 9.98x10™ 9.98x10™ 9.98x10™

# NDBGA and DPE results are with 3 bits per variable for F1 through F4 and 6 bits per variable for F5.
b Values for the underlying function are presented.
€ Valuesfor F4 optimized with no noise are presented.

Table 4-5 Results for F5-F14 Compared With SZGA

. Number of SZGA results NDBGA results *
Fn. Tmhfgﬁtl;(rﬁl function _ _ Average
evaluations Population best Population best population best

F5° 0.9980038 8,000 9.98x10™ 9.98x10™ 9.98x10™
F6 0.0 4,000 2.98x10°® 5.55x10™" 5.55x10™"
F7 -16.0917200 4,000 -16.09172 -16.0917200 -16.0037882
F8 0.3978873 4,000 0.39789 0.3978874 0.3979254
F9 -1.0316285 3,000 -1.03163 -1.0316284 -1.0316249
F10 30 4,000 30 3.0000000 3.0000000
F11| -186.7309088 3,000 -186.73091 -186.7309088 -186.7282441
F12 0.0 228,000 1.3074x10°® 1.04x10°® 0.1629989
F13 0.0 500,000 2.5422x10°® 5.08x10™%° 7.61x10%°
F14 0.0 668,000 2.3033x10™ 7.85x10%° 1.41x10°

% NDBGA and SZGA results are with 8 bits and 12 bits per variable, respectively.
b Presented results are calculated over 20 runs with different random number seeds.

“ NDBGA was limited to 8,000 function evaluations for F5 when compared with SZGA, which is different than 18,000 function
evaluation limit used for comparison with DPE.
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For the comparison of NDBGA with DPE given in Table 4-4, NDBGA was set to 3
bits per variable for the functions F1 through F4 and 6 bits per variable for F5. DPE was
tested with a fixed binary string size of 3 per variable for functions F1 through F5 [76].
This resolution of DPE was not enough for F5, but with aresolution of 6 bits per variable
DPE was able to converge to the global optimal in 18,000 function evauations. For the
F5 function, NDBGA converged to the global optimal with 6 bits per variable in 1,400
function evaluations on average. SZGA was tested with 12 bits per variable [59].
NDBGA's binary string size was kept at 8 bits per variable for comparisons with SZGA
as given in Table 4-5. The high number of function evaluations of DPE might be a result
of the “folding” process where the individuals faling out of the zoomed in region are
recalculated using new bounds, and this requires objective function evaluations equal to
the number of individuals recalculated. Similarly, in SZGA, the population is reset every
time the intervals are changed. NDBGA does not re-initialize individuals like DPE and
SZGA and it can therefore conserve objective function evaluations while converging to
global optimal.

The general performance measures of the NDBGA on the entire test suite, also
compared with a conventionally decoded GA (CDGA) are tabulated in Appendix Ap- 1,
page 184. CDGA isidentica to NDBGA agorithmicaly and parameter-wise except for
the decoding method. It also uses the same Gray coding scheme but it has the
conventional binary to real decoding function.

The tolerance limit, t, is set to 10”7 for all functions except the noisy F4, which had

atolerance limit of 0.25. When the best individua in the population reaches an objective
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function value that is closer than t to the theoretical minimum, it is considered a
successful convergence. All problems successfully converged to the theoretical optimum
100% of the time, except the noisy F4, which had a success rate of 55%.

The encoding mechanism presented in this chapter enables a binary coded genetic
algorithm to perform an efficient and effective search in the continuous domain. It is very
easy to convert a standard binary coded GA into NDBGA. The standard binary coded GA
in the continuous domain usually suffers from long chromosome strings, which can have
adverse effects in its performance due to some second order effects. i.e. effects due to the
algorithm mechanism, not due to problem size or complexity. Moreover, the number of
generations it takes to converge to a superior solution increases with increasing
chromosome length.

The NDBGA mechanism helps the GA in two ways. One is the shorter
chromosome length. The other is the fine search undertaken by the mapping
rearrangement mechanism without increasing the number of function evauations per
generation. This helps keep down the overall number of generations and thus the total
number of objective function evauations, which is critical for the computationally
intense functions in this study. As shown in Section 7, the NDBGA performs very

satisfactorily over different types and sizes of test instances.
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CHAPTER 5
AN APPROXIMATE LINEAR MODEL WITH PIECEWISE LINEAR

APPROXIMATIONS FOR DISTANCE AND DATA FLOW RATE

The mobile agent location optimization model proposed in this study involves a
complex and non-linear objective function as well as non-linear constraints. Although
thisis atypical scenario where researchers and practitioners benefit from using heuristic
optimization methods, a similar model is developed as a mixed-integer programming
(MIP) model by approximating the non-linear parts of the origina model by piecewise
linear curves. This model is then used to compare the performances of the heuristics up to

medium sized (10-15 nodes) problems.

5.1 Mathematica Modd

The approximate mixed integer model is developed by modification of a standard
maximum flow model to incorporate the all-pair maximum flow calculation. This allows
relocation of agent nodes considering the velocity constraints and enables varying link
capacities with varying link distances.

The basic idea for the al-pair maximum flow calculation is to let virtual

commodities, equal to the number of node pairs, flow through the network without
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sharing link capacities between commodity types. All distance calculations are

approximated to the Euclidean distances by mapping the orthogonal components of the

link and agent travel distances to their second power and summing them to get the square

of the said distances. The velocity and data rate constraints are then handled using the

distances in their squared forms. The model given below isfollowed by the description of

the notation used.

aFs

F + STTUN:T>S

(n)<(n-1)/2

Maximize

Subject to

F£Fg "STTUN: T>S
Cisr E U (i) TE," (ST TUN:T>S

Fg; fori=S§,

1
éCijST - éCJiST = :' 0 "iTN '{SandT}’
{6,018} {iGITED I_F, fori=T

Gohox|  TNITANGTE
a7 2|y, -y, “{iTN,jTAN, (i) TE}
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u; £a5 +by xDS "{i TN,j TAN,(ij) TE},
L L£D, <L <(RJ, =0,
and0<py <Py
(5-8)
u; £u; "{iTN,jTAN, (i) TE}
(5-9)
Vi 3| - x| “{j TAN}
(5-10)
v/ 2y, -y "{j TAN}
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ay +by v +ay +bXMVNxvjy£(vmaxj)2
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Ly JEV/ <Ly, L=Lg =0,
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5.2 Notation

Xi is the x-coordinate of node i
Vi isthe y-coordinate of nodei
F is the flow vaue between the user pair that has the lowest maximum flow

value among all pairs

Fsr isthe flow value of the virtual commodity ST from source node Sto target
node T

N isthe set of nodes

n is the number of nodes

Cijsr isthe flow value of virtual commodity ST through the link ij

d; is the absol ute difference between the x coordinates of nodesi and j

d; is the absolute difference between the y coordinates of nodesi and |

af,:x is the constant factor of the pe” segment of the piecewise approximation

curve for (d;)?

bgi is the rate factor of the ped" Segment of the piecewise approximation curve
for (d;)?
agi is the constant factor of the pe,),th segment of the piecewise approximation

curve for (d)

b isthe rate factor of the peyth segment of piecewise approximation curve for

Pey

2
(dyf
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Dijj is the approximated value of the link (i,j)’s distance squared

dx

oo is the boundary of the pe" segment of the piecewise approximation curve

for (d;)?, intermsof (d;)

L‘f)ydy is the boundary of the pdyth segment of the piecewise approximation curve

for (d)? intermsof (d))
Py is the number of line segments used for approximating the link distances

between the agent nodes and other nodes that are within their transmission

range, or may become by agent relocation within velocity constraints

a, is the constant factor of the p," segment of the piecewise approximation
curve for the link datarate

b, is the rate factor of the p," segment of the piecewise approximation curve
for the wirelesslink data rate

L‘:)u is the boundary of the puth segment of the piecewise approximation curve
for the wireless link datarate u, in terms of Dj;

Py is the number of line segments used to approximate the wireless link data
rate curve

A isthetravel amount of mobile agent j in the x-direction

v/ isthe travel amount of agent j in the y-direction

a, is the constant factor of the px segment of the piecewise approximation

X\2
curvefor (v;)
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b is the rate factor of the p,,"" segment of the piecewise approximation curve

for (v})?

a;yN is the constant factor of the p\,yth segment of the piecewise approximation
curve for (v))?

b;yw is the rate factor of the peyth segment of piecewise approximation curve for
(v))?

Vimaxj is the maximum velocity for agent |

Lo is the boundary of the p." segment of the piecewise approximation curve
for (v})?, interms of (V)

LV,{N is the boundary of the p\,yth segment of the piecewise approximation curve
for (v!)? interms of (v))

Py is the number of line segments used to approximate the magnitude of the

agent velocity squared
Decision variables
xl; is the x-coordinate of the relocated agent node

Vi is the y-coordinate of the relocated agent node |

As seen in Figure 5-1, the calculation of the linear coefficients a and b for a
piecewise linearization procedure is fairly straightforward, given that the number of line

segments P, and the variable limits L*,, p T [1,2,..,P-1] are known. This figure is
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presented for demonstration purposes only for f(x) = x4, x T [0, 2] and P = 3. The dashed
line segments represent the linear curves that are used to constrain the decision variable
that is approximated to x° given x. The slope for the (P+1)™ segment is assumed to be
infinity. The AMPL modeling language which is used to model the linear approximate
problem has a built-in function to automatically approximate non-linear functions. In this
study this functionality is used, information on which can be found in the AMPL user’s

manual [74].

Figure 5-1 The piecewise linear approximation of f(X) = x*. An exampleis plotted for x T
[0,2],P=3
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The AMPL mode file, run file and an example data file can be found in
Appendices Ap- 4, Ap- 5, Ap- 6 on pages 189 through 195. The descriptions of the
constraints of the above model are as follows:

The constraint given in equation ( 5-2 ) bounds the all-pair minimum flow decision
variable by all flows between any node pair.

The constraints given in equation ( 5-3 ) limit any virtua commodity’s flow on a
particular link by the link capacity. The flow of different virtual commodities are
exclusive and do not take up each others flow resources.

The constraints given in ( 5-4 ) maintain the flow equalities separately for every
virtual commodity flow.

The constraints given in ( 5-5) and ( 5-6 ) set the link distances in the x and y
directions, respectively, to the relevant decision variables by imposing a lower bound. A
lower bound is necessary because for larger link capacities, the link distance variables
would tend to become smaller.

The constraints given in ( 5-7 ) bound the decision variable used to approximate the
square of the link distances by the corresponding piecewise linear curve.

The constraints given in ( 5-8 ) bound the decision variable used to approximate the
link flow capacities by the piecewise linear Dj; versus uj; curve.

The constraints given in ( 5-9 ) maintain the equality in the link flow capacities in

the inverse directions.
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The constraints givenin ( 5-10 ) and ( 5-11) set the mobile agent travel distancesin
the x and y directions, respectively, to the relevant decision variables by imposing a lower
bound.

The constraints given in ( 5-12) are used to approximate the square of the distance
traveled to the corresponding piecewise linear curve.

The mixed integer approximate linear model for mobile agent location optimization
is a complex model, with the solver being able to return solutions for problems up to
medium size in reasonable time. It is used for verification of the heuristics and
comparisons on small scale problems. The performance of the mixed integer model, even
for small test problems, is far below the two heuristics developed in this study. The
results of the MIP model and comparisons with the NDBGA and PSO heuristics can be
found in Section 7.4.

One reason for the poor performance of the mixed integer model is the lack of
flexibility, especially in defining the objective function. The heuristics are designed to
favor solutions with total connectivity in any situation, or utilize the non-zero minimum
flow if thisis not possible. The first term in the objective function given in ( 5-1) is zero
when the network is not fully connected. This is sometimes not preventable for sparse
networks. The heuristics, however still consider the non zero minimum flow within the
network and continue with the optimization accordingly.

Additionally, the mixed integer program solutions had to be limited with a 10%

optimality gap in order to return solutions in practical time (although still lower than the
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two heuristics). The model, however, proves how complex and hard to solve a problem

thisis and provides a reasonable basis for algorithm comparison.
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CHAPTER 6
THE MOBILE AGENT LOCATION OPTIMIZATION SYSTEM AND

THE SIMULATION ENVIRONMENT

In the field where the MANET is active, the locations of the mobile agents
determine the links between them and any other node on the network. This affects the
link capacities and therefore the maximum possible data flow rates between the user
nodes, which is an important consideration when maximizing the network performance.

An optimization engine needs two decision variables per mobile agent- its direction
of motion and its magnitude of motion- and an objective function as defined in equation
( 3-7) that can be calculated when the node coordinates are known. Both the NDBGA
and PSO are population based heuristic optimization tools. Their genera working
principle for mobile agent location optimization is given in Figure 6-1 as a Pseudo code.

In Figure 6-1, the variables marked with * show the best values returned by the
optimizer. The implementation details of the NDBGA and the PSO agorithms are

described in Section 6.2 and 6.3, respectively.
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Start{
Initializet =t,
Dof
Read XY;
Optimize with NDBGA or PSO r;; and vi; using XY, , find ri; and
Vit*
Update (X 1),Yigen) Using rie and vie "I TAN,
Deploy mobile agents to (Xi1),Yic+1) "' TAN;
Sett=t+1
}While (User nodes are active)
}End

Figure 6-1 The pseudo code for the mobile agent |ocation optimizer

A MANET can perform in a stationary situation as well as in a dynamic one.
Therefore, a second type of problem exists which involves locating the mobile agents to

optimize the connectivity and performance of static users.

6.1.1 Dynamic Scenarios

The problems in this group are multiple time step problems with varying user
locations in each time step, as mainly considered in this study. Mobile agents are bound

with avelocity constraints which limit their movement each time step.
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6.1.2 Static Scenarios

There are times that a MANET might need to be set up in a stationary fashion. Such
applications can be seen in sensor networks, or at temporary establishments such as
military or disaster emergency camps, short-term housings, etc.

Modifying the mobile agent optimizer algorithm for the static case is fairly smple.
These can be regarded as single time step problems where agents are not bound with
velocity limits. The objective is to locate the agents such that the connectivity and

network performance among the stationary users are maximized.

6.2 TheNDBGA for Mobile Agent Location Optimization

The general structure and parametric settings of the NDBGA agorithm for the
mobile agent location problems are as follows:

Due to the inherent characteristics of the static and the dynamic problems, two
different NDBGA generation strategies are followed. For the static type, a generational
strategy is adopted. A generational strategy means that the child population size is equal
to the population size, and the children replaces al parent popul ation members except the
best two of the parent population, following an dlitist strategy.

For the dynamic type of problems, a steady state strategy is used, in which 20% of
the population members are selected, following a tournament selection strategy, as
couples and the child population replaces the worst 20% of the parent population. The
steady state strategy is implemented for the dynamic problems because the search space

is relatively small when compared to the static problems and a continuous incremental
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optimization is performed. The detailed pseudo code of the NDBGA for mobile agent

location optimization is as follows:

Start{
Initializet =t,
Read XY;
BestSoFar = -M
Set ri; and vi; for each agent i as decision variables, encoded by | binary digits each.
Dof

Initialize population for ( each population member }{
for (each r; variable) Ibyar =rp=0
for (each v;; variable) Ibygy =vip =0
if (t#t, AND mbr = 1) then {
Transfer population best from time (t-1)
}else{
Initialize population randomly by assigning each gene a binary

digit randomly with equal chances for 0 and 1.

}

Evaluate fitness for ( each population member ){
Decode for ( each ri; variable var){

Ibo™® = Ibyar + N(O,Khyzy)

(2p - rlb)x decimal (Cvar) + |b\tgr'np

lit = o1

}

Decode for ( each vi; variable var){
|b\t,2:np = Ibyar + N(O,Khyar)
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Calculate the xi¢+1) and Yig+1) coordinates suggested by the solution at (t+1)
for every agent i using decoded r;; and vi; values as given in equations
(3-10) and ( 3-11).
Form MANET topology, Gi+1, and calculate link capacities.
Cadlculate objective:
Set fitness F = MANET performance metric (Equation ( 3-7) )
if (Member fitnessis better than BestSoFar ) then {
Update BestSoFar as the member and its solution for

Update Ib,s for each variable with 1biS™ of the BestSoFar solution

}
Loop{

for ( Neouple COUplES){
Repeat for 2 parents: Py, Px{
Randomly pick g individuals from the population
Assign the one with best fitness as a parent
}
Crossover parents to create two offspring with probability pf
DO with equal probabilities{
{Uniform crossover: Offspring get each chromosome from

either of the parents, P; and P, with equal probabilities.}

OR
{Singlepoint crossover:Offspring get a random length
sequence of genes from one parent, and the corresponding
rest from the other. The reverse is applied to create the
second offspring.}

}
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if (No crossover) then {
Transfer P, and P, to offspring popul ation without crossover.

}
Mutate (bit flip) each offspring gene with probability by,

}

Evaluate fitness for (each offspring member)
Replace worst frepiace POpulation members with best /;epiace Offspring

}While % (stopping criteriais not met)

Update (X 1),Yie+1) "' TAN; using BestSoFar solution
Deploy mobile agents to (Xig+1),Yie+1) "I TAN;
Sett=t+1
}While ®9 (User nodes are active)

}End

The NDBGA takes two decision variables per agent, the direction and the
magnitude of its velocity, binary encoded using 12 bits per variable. Every individual in
the population represents one possible movement scenario for the mobile agent nodes.
The fitness evaluation involves generating the network that corresponds to the movement
scenario, find the link capacities and calculate the objective function, as described in the
“Evaluate fitness” routine in the above pseudo code. This is followed by parent selection
using tournament selection, crossover and mutation to create offspring, evaluation of the
offspring fitness and replacement of the parent population accordingly. This loop

continues until the stopping criteriais met, which is described in Section 6.4.
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The genetic algorithm specific parameters such as population size (m), tournament
size (g), bit mutation rate (by,) and crossover rate (p;) are determined by factorial

experimentation as described in Section 6.2.1.

6.2.1 Tuning the NDBGA parameters

Like every other heuristic, a GA’s performance depends to some degree eon its
parameter settings. As Wolpert and Macready [90] state in their study, known as the “no
free lunch” theorem, different search algorithms over the global problem space are
indistinguishable, but might return superior solutions on some group of problems. In
other words, it is shown that no single algorithm is perfect for comprehensive problem
space.

Algorithms tailored for a specific group of problems are expected to perform better
than others on that problem type. The behavior of an algorithm on any problem changes
when the values of its certain parameters change. In NDBGA, population size,
tournament size, mutation rate and crossover rate are the general GA parameters that are
commonly tested among different problem types, and the value of the non-deterministic
decoding error, K, is an additional parameter that has a potential effect on agorithm
performance.

In order to investigate the significance of the NDBGA parameters on the mobile
agent location optimization algorithm, a factorial experimentation is carried out.
Parameters such as population size, tournament size, bit mutation rate, crossover rate and

the decoding error K are tested with the following factor levels:
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Population size (m): four levelsat 30 60 90 120
Tournament size (g):  four levelsat 2 3 4 5
Bit mutation rate (by): fourlevelsat 0.02 0.03 0.04 0.05
Crossover rate (pe): twolevelsat 0.70 0.90

K twolevelsat 0.05 0.20

These levels are selected per preliminary experimentation results and common
practice among GA researchers [31, 44, 65]. The tests for the above factor levels are done
on 5 stationary test problems with 7 users and 5 agents, with 5 replications per problem
using different random seeds for a total of 25 runs per factor level combination (FLC),
resulting in atotal of 6400 runs. All runs are conducted with the same stopping criteria: If
the best solution is not improved in 1000 consecutive objective function evaluations, the

algorithm stops and returns the best solution found.

The three performance measures that are considered, in order of importance are:

1) The average percent of user nodes that one user node can communicate with,

(P1) (%).

2) All-pair minimum bandwidth, (P,) (Mbps).

3) Total bandwidth, (Ps) (Mbps).
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Calculation of the above performance measures are shown in detail in Section 7.3,
inequations ( 7-6), ( 7-7) and ( 7-8), respectively.

The results of the experiments are analyzed with Minitab software, and the analysis
of variance (ANOVA) indicated that the factors, other than K, have a significant effect on
the performance metrics. The p. however only has a significant effect on the al-pair

minimum bandwidth. Table 6-1 summarizes the ANOV A results.

Table 6-1 ANOVA analysisfor NDBGA parameters

Factor DF Metric SS MS F P
P, 12187 4062 1676  0.000
m 3 P, 9805 32684 67.05  0.000
P, 1401707 467236 17931 0.000
P, 1796 599 247 0060
q 3 P, 115767 38589 7916  0.000
P, 2048604 682868 262.06  0.000
P, 20205 6735 2779  0.000
b 3 P, 19166.7 63889 131.06  0.000
P, 3441697 1147232 44026  0.000
P, 3 3 001 0915
Pe 1 P, 2418 2418 496 0026
P, 24343 24343 934  0.002
P, 120 120 049 0482
K 1 P, 36.4 36.4 075  0.388
P, 665 665 026 0613
P, 1204605 301151 124261  0.000
Problem 4 P, 659633  16490.8 33830  0.000
Instance
P, 37736641 9434160 362046  0.000
P, 1547188 242
Error 6384 P, 311199.1 48.7
P, 16635388 2606
P, 2786104
Total 6399 P, 417989.3
P, 61289046
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Selecting a parameter level combination with three performance measures requires
a decison making process since this is a multi-objective criteria. A factor level
combination only dominates another one if it performs better in terms of all objectives.
The analysis of the above FLC revealed 34 non-dominated options. The non-dominated
factor level combination set is then sorted with respect to the performance metric P1, and
the one with the following settings is selected as the NDBGA parameter set due to its

satisfactory performance with respect to P, and P3; while being among the top with

respect to P;.
Population size (m): 90
Tournament size (Q): 3
Bit mutation rate (by): 0.03
Crossover rate (pe): 0.70
K 0.05

6.3 ThePSO for Mobile Agent Location Optimization

Due to PSO’s advantages discussed in Section 2.8.2, it is selected to be an
aternative tool for the mobile agent location optimization problem. Since the PSO is
proven to be an effective tool for continuous optimization, it provides a good comparison
opportunity for the NDBGA. The benefits and disadvantages of using PSO over NDBGA

or viceversa are discussed in Section 7.3.
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The pseudo code of the PSO implementation for mobile agent location

optimization:

Start{

Initializet =t,
Read XY;
G=-M
P = -M for all particles
Set riy and vi; for each agent i as decision variables, each encoded as areal number.
Dof
Initialize swarm particles’ X, V for ( each swarm particle ){
if (t#t, AND mbr =1) then{
Transfer best particle’'s X, P from time (t-1)
}else]
for (each r; variable) X — U(0,2p)
for (each vit variable) X — U(0, v, )

}
for (each rj; variable) Viax = 2p, V — U(-2p,2p)

for (each vi; variable ) Vimax = Vinax, V — U(V V)

}
Evauate fitness for ( each swarm particle ){
Calculate the Xi+1y and yi«+1) coordinates suggested by the solution at (t+1)
for every agent i using decoded rj; and vi; values as given in equations (
3-10) and ( 3-11).
Form MANET topology, G.1, and calculate link capacities.
Calculate objective:
Set fitness F = MANET performance metric (Equation ( 3-7) )
if (F isbetter than particle’s P ) then {
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SetP=F

}

if (P isbetter than G) then{
SetG=P

}

Setw=15

Loopf

for ( each swarm particle ){
if (U(0,1) <0.02) then{
Setw=15

}
Set R, = U(0,1)
Set R, = U(0,1)
Set j =R +4,R,

otherwise
Set v =Kx[wiv + iR 1 (P~ X)+ 4R, 1(G - X]
Scale V down, if any of its elements is beyond the corresponding

. V., U
Vimax limit, by mv?({ A/max)vag.

Set X=X+V
}

Evauate fitness for ( each swarm particle)

}While &%) (stopping criteriais not met)

Update (X 1,Yir ) "1 TAN; using G

TN
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Deploy mobile agents to (Xi1),Yic+1) "' TAN;
Sett=t+1
}While ®9 (User nodes are active)

}End

The PSO for mobile agent location optimization takes two decision variables per
agent, the direction and the magnitude of its velocity. Every particle in the swarm
represents one possible movement scenario for the mobile agent nodes. The fitness
evauation involves generating the network that corresponds to the movement scenario,
finding the link capacities and calculating the objective function, as described in the
“Evaluate fitness’ routine in the above pseudo code. Thisis followed by updating the P,
G, and the V vectors, and finally the X vector for each particle. Thisloop continues until

the stopping criteriais met, which is described in Section 6.4.

6.3.1 PSO Parameters

As discussed in Section 2.8.2.2, the PSO performance is enhanced by the
introduction of the constriction coefficient, and setting the social and cognition
parameters such that they sum up to a number larger than 4. The common practice is to
set them to 2.05 each, which has been done in this study also [17]. Additiondly, a
dynamic weight inertia strategy is applied with an initial w, value of 1.5, and decreased
geometrically by a coefficient of 0.98 at every iteration. Although the common practiceis
to let the inertia coefficient decrease monotonically, in preliminary experimentation it

was found beneficial to randomly reset it back to its high level. This improves the ability
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to escape local optima by “exciting” the particles every now and then, helping them
swarm to other regions. The inertia coefficient is reset to its original value of 1.5, with a
probability of 0.02, at each iteration.

The swarm particle velocities are limited to the variable limits, which is aso a
common practice. One important thing that needs to be noted on limiting the velocitiesis
that the swarm particle velocity vector is scaled down entirely. That is, all of its elements
are scaled down rather than only the ones that exceed the limit. The scale factor is
calculated using the velocity element that has the largest deviation from the maximum
allowed velocity limit.

The global neighborhood was found to be the most efficient over a wide variety of
continuous test problems as suggested by Carlise and Dozier [19]. A global
neighborhood topology is used for the PSO in this study. For all comparisons, the PSO

and the NDBGA population sizes are kept equal.

6.4 Stopping Criteria

Since the heuristic optimization algorithms are expected to return a “good solution”
which usually cannot be tested for optimality, there is one or more stopping criteria used.
In this study, a strategy is used which records the function evaluation count every time
there is an improvement on the best known solution. If no improvements are detected
within a preset number of consecutive function evaluations, the algorithm stops and

returns the best found solution so far.
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The mobile agent location optimizer is designed for two types of scenarios, static
and dynamic, which are explained in detail in Section 6. Here, the importance of their
differencesin terms of the stopping criteriais discussed.

The static problems and the dynamic problems are aimost identical except for the
problem complexity. The static problems have a significantly larger search space due to
the larger velocity constraints of the mobile agents. On the other hand, the dynamic
problems are made up of many static problems that have agents with infinitesimal
velocity constraints.

This property brings an advantage when solving individua time steps of the
dynamic problems because the stopping criteria requirements can be lowered drastically
without a significant loss of performance. According to preliminary experiments, the
sufficient stopping criteria are found as follows. For the static problems, both the
NDBGA and the PSO agorithms stop and return a solution if the number of objective
function evaluations without an improvement of the best solution found so far is 1000

and for dynamic problems, the requirement for each time step is set equal to 200.

6.5 Semi-intelligent Agent Behavior

The heuristic mobile agent location optimizer requires the agents to be an integral
part of the MANET in order to calculate the objective function. If, for some reason, an
agent falls back, or becomes disconnected from the network, it has to be able to move

independently and catch up with the MANET to be properly utilized again.
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To achieve this, a ssimple method is developed. Every mobile agent keeps track of
the coordinates of the users it can communicate with, including multi-hop
communications. The center point of the coordinates of these users is treated as an
attractive target to move towards in case an agent becomes isolated. The last recorded
velocity of the target location, which is the difference between the target at time t and
time t-1, is also preserved in order to be able to predict the change in the target location
while the agent isisolated.

An agent that cannot communicate with any user node, or an agent that has a node
degree of 1 or O (ng < 2), it is considered an isolated agent. If an agent becomes isolated,
then it will self deploy towards the last recorded target coordinate until it catches up with
the network, becomes a node with ng 3 2 and it is able to communicate with at |east one

user node.
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The pseudo code for the semi-intelligent agent behavior is as follows:

For any agent j{
If(t="1,) then{ XY; =(0,0) }
At any time t{
If( JUN/| > 1) then {

XY = C(UN/)
}else{
If(t>2) then{
XYy = 2xXY [}y = XYy
}else{
XYy = (Xj, Yie)
}
}

If( d(j) £ 1 OR \UNJ\ £1)then{

Self deploy agent j to XY

}elsef
Obey mobile agent location optimizer system

Where XYJ.I isthe calculated target coordinate for self deployment of agent | at time

t, UN/ is the set of user nodes that agent j can communicate with (not necessarily within
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the immediate range), C(UN,') is the coordinate center of all usersin UN/, (X, V) 1S

the position of agent j at timet, and d(j) is the node degree of agent j.

In this chapter, the two different problem scenarios for the mobile agent location
optimization problem, static and dynamic, are described. The details of the NDBGA and
the PSO agorithms are given. The determination of the NDBGA algorithm parametersis
done by afull factorial experiment and a multi-criteria decision is made by taking avery
high performing parameter combination.

The dynamic mobile agent location optimization can be enhanced by making use of
future user location prediction and information gained during past time steps. These are

explained in sections 7.3.2 and 7.3.3 in the next chapter.
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CHAPTER 7

TEST PROBLEMS AND RESULTS

The performance anayses of this study are done in a computerized simulation
environment. Test problems of static and dynamic natures are generated and the
performance of the developed agorithms are analyzed using computer simulation. Test
problems for the dynamic cases are generated in three groups based on problem size:
small, medium and large. Small sized problems employ 4 users and 3 agents, medium
sized problems employ 8 users and 6 agents, and large size problems employ 16 users
with 12 agents. The dynamic test problems are generated with a span of 100 time steps.

All test problems are generated and the computer simulations are carried out using
the MATLAB technical computing package. To achieve better computational
performance, all heuristic optimization computations are coded in C++ and embedded
into the simulation platform within MATLAB. The MIP model was constructed using the
AMPL modeling language and solved with CPLEX version 9.1, which is al'so embedded

inthe MATLAB simulation platform.
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7.1 Generation of the Static Test Problems

Test problem data involve the locations of the users as well asthe initial coordinates
of the mobile agents. The mobile agent location optimizer system then deploys the agents
within the simulation area. The test problem instance generation code and the test
problem parameters necessary to create the test problems are given in Appendix Ap- 2

and Ap- 3, pages 185-188.

7.2 Generation of the Dynamic Test Problems

Test problem data specify the starting locations of the users and the agents,
followed by al future users’ locations in discrete time steps. Naturally, the mobile agent
location optimizer system is only given the user location data of the current time step.

The ssimulation dimensions are set so that the wireless transmission ranges of al
MANET nodes are 1.0 distance unit. Velocity constraint vimax for user nodes is 0.05 and
Vmin for user nodes is 0.02. User nodes come to a stop when they reach their destinations.
Velocity constraint vimax for mobile agents is 0.06 and vy, for mobile agents is 0.0. The
velocity vaues indicate Euclidean distance units traveled per one time increment. The
simulation area is a two dimensional rectangular area with Xgin = 0, Xpax = 5, Ymin = O.
Ymax = 5. Test problem instance generation code and the parameters necessary to create

the test problems are given in Appendix Ap- 2 and Ap- 3, pages 185-188.
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7.2.1 User Mobility Model

User nodes are assigned random destination points and they follow a random path
with random perturbations to their directions. Each user is assigned a random velocity
U[Vimin, Vmax] & €ach time step. Let uv;; be the unit vector in the direction of the motion of
the | user node at time t, and uvdestin; be the unit vector in the direction of its final
destination point from its location at time t, as given in equation ( 7-1 ). The initia

direction of user motion, i.e. uv,, , iscreated randomly for all users.

it ?

_ (deestin’ yj‘da;in) - (th , yjt)
‘(deam’ yjdeiin - (th , yth

®
uvdestin,,
(7-1)
The direction angle of each user node, uvy, is perturbed by a uniformly distributed
random number between [-p/4 , p/4] with a 10% probability in each time step before

calculating its direction of motion for the next time step, uvjt+1). The random rotation

procedure is given in equations ( 7-2) through ( 7-5).

qg=U(-pl4pl4)

(7-2)
__gcoslg) sin(g)
RotMatrix=a . ’
§-sin(g) cos(g)
(7-3)
uv, = uv, ~ RotMatrix
(7-4)
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where g is the random rotation in the direction of the motion, RotMatrix is the
corresponding rotation matrix and uv;t is the perturbed unit vector in the direction of

motion of the " user at timet.
The directions of user nodes are calculated for each successive time step as shown

in equation ( 7-5).

Wj+1) = (@)-Uvje + (1-a)-uvdesting
(7-5)
where a = 0.95 is the weight factor for the current motion direction, uvj.1 is the unit

direction vector of the simulated motion of the j'™ user in the next time step, uveurrentj; is
the current direction vector, and uvdestin is the direction towards the destination of the
j™ user from its current location.

This mobility model is similar to the random waypoint model, but different in the
sense that the user nodes try to reach a certain destination. The simulated motion
resembles the case as if the users are searching for their destination or making their way
around forbidden areas or obstacles, which is a reasonable representation of a search and
rescue or a military operation. Other mobility models could be readily used since the

motion strategy is not an input.

7.3 Performance Metrics and Use of Dynamic Information

This section is organized as follows; first, analyses are presented on future location

prediction and the usage of the best solution from the previous time step in Section 7.3.1.

109

www.manaraa.com



Then, comparisons of the NDBGA and PSO heuristics and CPLEX as the MIP solver are
made on static and dynamic test problem casesin Section 7.4.
The performance criteria that the comparisons are based on are the three metrics

givenin Section 6.2.1 and, in the order of importance, they are:

1) The average percent of other usersthat one user can communicate with, P; (%),

givenin equation ( 7-6).

L & Az !

o i, jIUN:j2i

a =

tzlgnu i(n, -1)-
p=—2F f1100

(7-6)
where,

t; isthe final time step in the problem simulation. For static problems, t; = 1.

~

i1 if thereisapath between thei™ and the j™ user at timet,

Z, = 1 | i, TUN,
) otherwise

ijt

2) Theaverage al-pair minimum bandwidth, P, (Mbps), given in equation ( 7-7).

te
a min {MaxFlomG,.i, j): MaxFlow(G, ,i, j) > 0}

P _ t:1i,jIUNt:j>|
), =

tf
(7-7)
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3) Theaverage total bandwidth, P3 (Mbps), given in equation ( 7-8).

t

éaé ‘AMaxFlon(G, i, j)
=1 &i jTUN:j>i i
P, = t
f

—_

(7-8)

The performance measures given in equations ( 7-6 ) through ( 7-8 ) are indicators
of algorithm performance over the entire simulation time span. P; is the average percent
user connectivity metric, in which it is possible to weight to give more or less importance
to users connectivity properties. For dynamic problems, the P, P, and P; metrics reflect
the average performances over the entire time span, which form the basis of algorithm
performance comparisons for dynamic problems.

All of the above listed performance measures are “the higher the better” type of
performance measures. A fourth performance measure, the time for the optimizers to

return a solution, is also recorded.

7.3.1 Dynamic Problem Anayses

The dynamic have unique characteristics that, if made use of, enable some
additional inputs to the optimizer to enhance performance. This performance increase is
realized in both the solution found and in the solution time.

The two additional inputs used are the future predicted locations of MANET users

and the transfer of the best solution at time t to time t+1 during the initialization of the
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population at time t+1. The results of these two analyses are given in Sections 7.3.2 and

7.3.3.

7.3.2 The Effect of Future Location Prediction

The optimization of the mobile agents in the MANET is done according to the user
location data. At each time step, the user locations are collected, and the optimum agent
locations are determined. As the agents relocate to their calculated locations, users aso
move to their next coordinates, which are used at the next time step.

Optimizing agent locations using current user coordinates can be seen in a sense as
the agents following the users movements on the field. This actually can be aided by
forecasting the coordinates of the users at a specific prediction horizon by using the past
location information, as described in Section 3.4, and supplying this information to the
agent location optimizer instead of the current user location data.

To test for the effect of using predicted user location in mobile agent location
optimization, prediction horizons (H) of 1, 2, 3, 4, 5, 6, 7 and 8 time steps are analyzed
on 5 medium size test problems, with 5 replications per problem with different random
seeds for the heuristic algorithm, for atotal of 200 runs.

The location prediction did not have any adverse effects on the average percent of
users that could communicate. Furthermore, the results show that a horizon of H =4 isan
optimal setting which not only helps increase the average total and the minimum
bandwidth of the MANET but also decrease the average time it takes to return the

solutions. Figure 7-1 and Figure 7-2 show the average total and minimum bandwidth of
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all runs at corresponding H levels. Figure 7-3 shows the average time it takes to solve a

50 time step problem with corresponding levels of H.

Prediction Horizon vs Avg. Min. Bandwidth

50.8—]

49.8—

48.8—

Bandwidth

Avg. Min.
(Mbps)

47.8—

46.8—

45.8—

T
0 2 4 6 8

Prediction H

Figure 7-1 Prediction horizon H versus the average minimum bandwidth

Prediction Horizon vs. Avg. Total Bandwidth

1104
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Bandwidth
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T
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Figure 7-2 Prediction horizon H versus the average total bandwidth
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Prediction Horizon vs Solution Time
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Figure 7-3 Prediction horizon H versus the average total solution time

In Figure 7-3, it seems as if there is an improvement in the solution time as H
increases. Interpreting this as an improvement would be misleading. It is true that
solutions are returned more quickly, but this is because the algorithm cannot improve its
best solution. This best solution is inferior to the best solution with smaler prediction

horizons.

7.3.2.1 Time Varying Effects

In this part, the effect of future location prediction on the performance metrics at
each time step is analyzed for an example problem. Figure 7-4 and Figure 7-5 show the
change in performance metrics over time for cases with no location prediction (H=0),
with prediction of 4 time steps into the future (H=4) and with prediction of 8 time steps

into the future (H=8).
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Figure 7-5 Change of total bandwidth with simulation time

Figure 7-6 shows the actua optimized locations of mobile agents for the example
problem with different prediction horizons. Three different optimizations are overlaid in
the figures. Diamond shape represent user nodes while D, o and + represent agents

optimized with H=0, H=4 and H=8, respectively.
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Figure 7-6 Mobile agent behavior with location prediction
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7.3.3 The Effect of Using the Best Solutions From the Previous Time Step

Dynamic mobile agent location optimization inherently models a continuous time-
space relationship. If the best solution vector from the previous time step (t-1) is fed into
the new population when solving for the agent velocity vectors of timet, it is expected to
speed up the search process because the best velocities of timet are likely to be correlated
with the best mobile velocities of time t-1.

The effect of feeding the last time step’s best solutions into the new population is
investigated on 5 medium scale test problems with 5 replications per problem.
Transferring the only the best solution, top 5 solutions, best half (45) and the entire
population (90) is tested for each instance for atotal of 125 runs. The results show that
the inclusion of the best solutions -no matter how many- from the previous time step has
only a minor effect, if any, on the performance measures but a significant reduction,
about 30-40%, on the solution time. Figure 7-8, Figure 7-9, and Figure 7-10 show the

effects on the three performance measures and the solution time as boxplots.
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Figure 7-7 The effect of feeding the best solutions from (t-1) to t on average % user

connectivity
* *
= 30 - X
S
=
©
S
n 20 -
S
>
g [ *—— s
s 10 —
2
= | | ] |
0 —]
I I I I I
0 1 5 45 920

Pop. Best Transfer

Figure 7-8 The effect of feeding the best solutions from (t-1) to t on average minimum
bandwidth between the MANET user pairs
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Figure 7-9 The effect of feeding the best solution from (t-1) to t on average total
bandwidth between the MANET user pairs
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Figure 7-10 The effect of feeding the best solution from (t-1) to t on average solution
time
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7.3.3.1 TimeVarying Effects

In this part, the effect of transferring the population best is investigated at each time
step for an example problem. Figure 7-11, Figure 7-12 and Figure 7-13 show the change
in performance metrics over simulation time and solution times for cases with no transfer

and with transfer of the population best.
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Figure 7-11 Change of (a) % user connectivity (b) all pair minimum bandwidth with
simulation time
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Figure 7-13 Solution time for each time step

As a conclusion, it can be stated that the transfer of the information of the best

solution from t-1, which is actually the current velocity direction and magnitudes of the
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mobile agents, improves the solution time significantly. When the effects of transferring
the best solution, the top 5, best half or the entire population are analyzed with paired-t
tests, the effects of transferring any more than one solution are not statistically
significant. Therefore, in order to keep any possible bias to a minimum, transfer of only
the population best is set as the default for the rest of this study.

Another result that can be drawn when the effects of future user location prediction
and population best transfer are anadyzed is as follows. The prediction provides
estimation of unknown information and therefore it helps improve solution quality.
Transfer of the previous best solution provides memory to maintain previously gained
knowledge and it helps speed up reaching a high quality solution in the future time step,

which is very important for real time applications.

7.4 Algorithm Performances

In this section, the performances of the NDBGA, the PSO and the CPLEX solvers
are compared on various sizes of static and dynamic problems. The boxplot figures are

produced with Minitab and atypical boxplot is given in Figure 7-14.
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Figure 7-14 Boxplot figure description

7.4.1 Comparisons on Static Scenarios

The algorithms’ performance are analyzed and compared with respect to the three
measures defined in Section 7.3. The heuristic algorithms are run for 5 replications per
problem.

The analyses are grouped into three problem categories; small, medium and large,
depending on the number of nodes. The results and comparisons of the algorithm
performance are presented as boxplots of all the performance data from all problem
instances of same type and size, followed by the graph of the best, average and the worst
performances over replications for each problem instance. The problem instances are
generated randomly, with the code and random seed data provided in appendices Ap- 2

and Ap- 3. Static users are assigned x and y coordinates drawn from a uniform
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distribution U(0,XYnax), Where XYmax = 5 units, representing a 5 by 5 square simulation

area.

7.4.1.1 Smadl Static Problems

The comparisons on small scale problems are done on 20 instances with 6 users and
4 agents. Problem instances are generated as explained in Section 7.4.1. An example
problem and its solution is given in Figure 7-15. In the figure, the diamond shaped nodes

represent user nodes and the solid round shaped nodes represent the agent nodes.

5 5
&
4 4
3 O 3
2 <> 2
&
1 & % 1
0 . ' 0
0 1 2 3 4 5 0 1 2 3 4 5
Timea(afa} (b)

Time# 1
Figure 7-15 An example problem (a) and its solution (b) for a small static scenario

When the average connectivity results are analyzed, as seen in Figure 7-16, the
NDBGA based mobile agent location optimizer performed the best in terms of the

average % of user connectivity. NDBGA is followed by the PSO with approximately 9%
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gap. The CPLEX’s performance is much poorer with nearly 50% gap when compared to

the NDBGA.
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Figure 7-16 The performance of the GA and the PSO agorithms on small scale static test
problems in terms of the % user connectivity. (a) Boxplot (b) Best, average and worst
performances over all problem instances
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In terms of the minimum bandwidth between al user pairs, CPLEX seemingly has
done a better job than the heuristics as presented in Figure 7-17, but given its much
poorer performance on the most important first criteria, the improvement in the average
minimum bandwidth is not areal benefit. The NDBGA lead over the PSO is still valid in
this criteria, with approximately 3.5% gap, although the PSO has generated some outliers

towards the higher minimum bandwidth.
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Figure 7-17 The performance of the GA and the PSO agorithms on small scale static test
problems in terms of the minimum (nonzero) bandwidth between all user pairs. (a)
Boxplot (b) Best, average and worst performances over all problem instances

When the average tota bandwidth results are compared, the NDBGA has
outperformed the PSO and CPLEX on an average basis, while PSO has produced some

better outliers. These results can be seen in Figure 7-18.
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Figure 7-18 The performance of the GA and the PSO algorithms on small scale static test
problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best,
average and worst performances over al problem instances

In terms of the solution times, CPLEX recorded the worst performance, which is

not surprising. Although the PSO returned slightly quicker solutions on the average, its
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poorer performance on the connectivity metrics makes the NDBGA the preferred

optimizer for this group of problems. The solution time results are presented in Figure
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Figure 7-19 The performance of the GA and the PSO a gorithms on small scale static
problems in terms of the solution time. (a) Boxplot (b) Best, average and worst
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7.4.1.2 Medium Static Problems

The comparisons on medium scale problems are done on 20 test problems with 10
users and 10 agents. Problem instances are generated as explained in Section 7.4.1. Only
the heuristic algorithms could be tested on this scale, due to the complexity of the MIP

model. For the NDBGA and PSO solutions, each problem is solved 5 times with different

random number seeds.
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Figure 7-20 The performance of the GA and the PSO a gorithms on medium scale static
test problemsin terms of the % user connectivity. (a) Boxplot (b) Best, average and worst

performances over al problem instances

Figure 7-20 presents the average % user connectivity among the network. For this

group of problems, the performance of the NDBGA is clearly superior to the PSO. There

is an approximately 10% performance gap between the two. The NDBGA has

successfully returned solutions with full communication except afew outliers.
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Figure 7-22 The performance of the GA and the PSO a gorithms on medium scale static
test problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best,

average and worst performances over al problem instances

The performance of the NDBGA is aso superior in terms of the remaining

performance criteria. The average minimum and total bandwidth are both approximately
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25% higher than the PSO while the solution time is approximately 20% quicker. The

results are presented in Figure 7-21, Figure 7-22 and Figure 7-23.
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Figure 7-23 The performance of the GA and the PSO algorithms on medium scale static
problems in terms of the solution time. () Boxplot (b) Best, average and worst
performances over all problem instances
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7.4.1.3 Large Static Problems

The comparisons on large scale problems are done on 10 test problems with 20
users and 20 agents. Problem instances are generated as explained in Section 7.4.1. Only
the heuristic algorithms could be tested on this scale, due to the complexity of the MIP
model. For the NDBGA and PSO solutions, each problem is solved 5 times with different
random number seeds.

Both algorithms returned solutions with 100% user connectivity for all test runs.
Therefore only comparisons on the average minimum bandwidth, average total

bandwidth and solution time are presented.
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Figure 7-24 The performance of the GA and the PSO algorithms on large scale static test
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Figure 7-25 The performance of the GA and the PSO a gorithms on large scale static test
problems in terms of the total bandwidth between all user pairs. (a) Boxplot (b) Best,
average and worst performances over al problem instances

As seen in Figure 7-25 and Figure 7-26, the average performance of the NDBGA is

approximately 10% better than the PSO in terms of the minimum bandwidth between
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user pairs, and about 3% better then PSO in terms of the total bandwidth. In addition to

this, the average solution return time is about twice as long for the PSO.
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Figure 7-26 The performance of the GA and the PSO algorithms on large scale static
problems in terms of the solution time. (a) Boxplot (b) Best, average and worst
performances over all problem instances
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Table 7-1 presents paired-t test results for NDBGA and PSO performances on static

test problem instances.

Table 7-1 Paired-t tests for NDBGA and PSO on static scenarios

Problem Mean Performance Paired-t Test
Size NDBGA PSO p-value
% User Connectivity 56.267 50.600 0.003
Min. Bandwidth (Mbps) 10.924 6.541 0.000
Small
Total Bandwidth (Mbps) 110.685 71.331 0.000
Solution Time (sec) 11.699 6.226 0.000
% User Connectivity 96.178 84.756 0.000
Min. Bandwidth (Mbps) 3.674 2.604 0.006
Medium
Total Bandwidth (Mbps) 432.840 326.446 0.000
Solution Time (sec) 51.401 66.383 0.006
% User Connectivity 100.000 100.000 N/A
Min. Bandwidth (Mbps) 5.156 4.533 0.192
Large
Total Bandwidth (Mbps)  2573.723  2490.506 0.289
Solution Time (sec) 477.789 1141.468 0.000

Table 7-1 suggests that amost all

practically significant differences in

performances of NDBGA and PSO are statistically significant as well. The PSO suffers

from long solution times for larger size problems with no improvement on the network

performance measures when compared with the NDBGA.
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7.4.2 Comparisons on Dynamic Scenarios

The performance analyses of the three optimizers on the dynamic problems are
presented in this section. Similar to the static case, the results and the four performance
comparisons are presented as boxplots of al the performance data from all problem
instances of same type and size, followed by the graph of the best, average and the worst
performances over replications for each problem instance. The analyses are grouped into
three problem categories, small, medium and large, depending on the number of nodes.

The connectivity performance metrics for the dynamic problems are calculated at
the end of each time step and reported as the average over the time span of the problem.
The solution time for the dynamic problems reflect the time it takes to complete a full

simulation over the entire time span.

7.4.2.1 Small Dynamic Problems

The comparisons on small scale problems are done on 20 dynamic problems with 4
users and 3 agents in a time span of 100 time steps. The problem instances are generated
as explained in Section 7.2 and the test problem generation code given in appendices Ap-
2 and Ap- 3. For the NDBGA and PSO solutions, each problem is solved 5 times with
different random number seeds.

An example problem and its solution is given in Figure 7-27. In the figure, the
diamond shaped nodes represent user nodes and the round shaped nodes represent the
agent nodes. The time caption shows the simulation time which runs from 1 to 100 for (a)

atimet=1,(b)att=25,(c)att=50and (d) att = 75.
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Figure 7-27 An example small scale dynamic scenarioshown at (&) t=1, (b) t =25, (c) t
=50 and (d) t = 75, diamond shape represents user nodes and round shape represents
agent nodes

When the average results are analyzed, as seen in Figure 7-28 the PSO based
mobile agent location optimizer performed the best in terms of the average % user
connectivity. PSO is followed by the GA with approximately a 1% gap and finaly, the

MIP model with approximately a 3.5% gap.

143

www.manaraa.com



(@

Avg. % User Connectivity

(b)

100

95

90

85

80

75

70

65

60

55

Avg. % User Communication

\v4®) O O Avie] O O

100 —

90 —

80 —

70 —

60 —

50 —

o |
e
* *
! i
* *
*
* *
*
*
*
T T T
NDBGA PSO CPLEX

Optimizer Type

O O O VO YO VO 20 O
voO

Nag

O CPLEX
O NDBGA
v PSSO

o
1 1 1 1 1 1 1 1 1 1 1 1

9 10 11 12 13 14 15 16 17 18 19 20
Problem Instance

Figure 7-28 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
small scale dynamic test problemsin terms of the average % user connectivity. (a)
Boxplot (b) Best, average and worst performances over all problem instances

The GA based optimizer takes the lead in terms of the average minimum and total

bandwidth among al MANET users. Figure 7-29 gives the performances of the
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algorithms with respect to the average minimum bandwidth metric. The GA has the lead

with a gap of approximately 1.5% over the PSO and CPLEX is behind the two heuristics

again with an approximate performance gap of 9%.
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Figure 7-29 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
small scale dynamic problemsin terms of the average minimum (nonzero) bandwidth
between all user pairs. () Boxplot (b) Best, average and worst performances over all

problem instances
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The performance of the three algorithms with respect to the total bandwidth

between MANET users is similar to the minimum bandwidth metric. Again, as seen in

Figure 7-30, the GA leads with a 2.5% performance gap over the PSO, and around 7%

over the CPLEX solver.
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Figure 7-30 The performance of the GA, the PSO and the MIP (CPLEX) algorithms on
small scale dynamic problemsin terms of the average total bandwidth between all user
pairs. (a) Boxplot (b) Best, average and worst performances over al problem instances
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Finally, the solution time of the heuristics for the small scale problems is about 1/5"
of the CPLEX model. As seenin Figure 7-31 with PSO being the fastest with a minor gap

when compared to the GA.

All three algorithms managed to sustain an average user connectivity of at least

90%, heuristics being at the higher 90's.

7.4.2.1.1 TimeVarying Performance:

In this part, the analyses of the algorithms performance at each time step is
presented for atypical small size problem. Figure 7-32 and Figure 7-33 show the change
in % user connectivity, and change in minimum and total bandwidth with time,
respectively. The dashed lines represent aMANET with no agents present and solid lines

represent aMANET with 3 mobile agents and 4 users.
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Figure 7-32 Change in % user connectivity over simulation time
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In the above figures, the positive impact of having the mobile agentsin the MANET

can be clearly seen. The network without mobile agents starts to lose connectivity around

ol Ll Zyl_i.LI
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t=40, whereas full connectivity is maintained until t=95 with agents. The imporovement

on the minimum bandwidth is also clearly visible before t=40.

7.4.2.2 Medium Dynamic Problems

The comparisons on medium scal e problems are done on 10 dynamic problems with
8 users and 6 agents in a time span of 100 time steps. For the NDBGA and PSO, each
problem is solved 5 times with different random number seeds.

When the results are analyzed, unlike the small scale problems, for the medium
scale the genetic algorithm performed superior to the PSO with respect to al three
performance measures, and the solution time. However, asit can be observed from Figure
7-34, that the performance gap for the average % user connectivity measure is quite

narrow.
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Figure 7-34 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
medium scale dynamic problems in terms of the average % user connectivity. (a) Boxplot
(b) Best, average and worst performances over al problem instances

Figure 7-35 shows the performance of the agorithms on the average minimum

bandwidth between al MANET user pairs. In terms of the minimum bandwidth, the GA
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lead is followed by the PSO by a 10% gap, while the MIP model suffers from significant
lack of performance.

With the medium scale problems, the MIP model became significantly
overwhelmed and unstable. The CPLEX solver was unable to solve 3 out of 10 test
problems, even with the time limitation removed. On the ones it could solve, it suffered
from lack of performance due to the problem scale. Due to this issues, the large scae

problems are only tested with the heuristic algorithms.
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Figure 7-35 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
medium scale dynamic problems in terms of the average minimum (nonzero) bandwidth
between all user pairs. (a) Boxplot (b) Best, average and worst performances over all
problem instances
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A performance similar to the minimum bandwidth measure is seen on the average

total bandwidth. Again, as seen in Figure 7-36, the GA has a performance lead over the

PSO by approximately 3%.
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Figure 7-36 The performance of the GA, the PSO and the MIP (CPLEX) agorithms on
medium scale dynamic problems in terms of the average total bandwidth between all user
pairs. (a) Boxplot (b) Best, average and worst performances over al problem instances
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7.4.2.2.1 TimeVarying Performance:

In this part, the analyses of algorithms’ performance at each time step is presented

for an example medium size problem. Figure 7-38 and Figure 7-39 show the change in %

user connectivity, and change in minimum and total bandwidth with time, respectively.

The dashed lines represent a MANET with no agents present and solid lines represent a

MANET with 6 mobile agents and 8 users.
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Figure 7-38 Change in % user connectivity over simulation time

100

The impact of mobile agents on the MANET performance in terms of connectivity

is significant. The network with agents never loses connectivity. Moreover, the minimum

and the total bandwidth performance is significantly improved as seen in Figure 7-39.
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7.4.2.3 Large Dynamic Problems

The comparisons on large scale problems are done on 5 dynamic problems with 16
users and 12 agents over a time span of 100 time steps. For the NDBGA and PSO, each
problem is solved 5 times with different random number seeds.

When the results are analyzed, it can be seen that the NDBGA a gorithm performed
dlightly better in terms of average %user connectivity. The boxplot and the best, average
and the worst performances for every problem instance can be seen in Figure 7-40 (a) and

(b), respectively.
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Figure 7-40 The performance of the GA and the PSO a gorithms on large scale dynamic
problems in terms of the average % user connectivity. (a) Boxplot (b) Best, average and
worst performances over al problem instances

When the results for the average minimum bandwidth between user pairs are

anayzed, the PSO shows a dlightly better overal average performance, around 9%, with
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larger variations within problem instances. The boxplot and the mean value graphs are

givenin Figure 7-41.
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Figure 7-41 The performance of the GA and the PSO agorithms on large scale dynamic
problems in terms of the average minimum (nonzero) bandwidth between all user pairs.
(a) Boxplot (b) Best, average and worst performances over all problem instances
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The NDBGA and the PSO agorithms perform almost the same in terms of the
overal average total bandwidth between user pairs, with PSO having larger variance

within problem instances. The boxplot and the mean value comparison graphs are given

in Figure 7-43.
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Figure 7-42 The performance of the GA and the PSO agorithms on large scale dynamic
problems in terms of the average total bandwidth between all user pairs. (a) Boxplot (b)
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The average solution times for the NDBGA and the PSO for large scale dynamic
problems are significantly different. Although the PSO’s performance for the average
minimum and the total bandwidth measures is quite close to the NDBGA, the
computation time is significantly higher. The PSO’s average performance is around 33%
slower than the NDBGA. Furthermore, NDBGA'’s performance for the shortest and the
longest duration solutions are both superior to those of PSO’s. The boxplot and the mean

value graphs for the solution time are given in Figure 7-43.
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Figure 7-43 The performance of the GA and the PSO agorithms on large scale dynamic
problems in terms of the solution time. (a) Boxplot (b) Best, average and worst
performances over all problem instances

7.4.2.3.1 TimeVarying Performance:

In this part, the analyses of the algorithms performance at each time step is

presented for an example large size problem. Figure 7-44 and Figure 7-45 show the
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change in % user connectivity, and change in minimum and total bandwidth with time,
respectively. The dashed lines represent aMANET with no agents present and solid lines

represent aMANET with 12 mobile agents and 16 users.
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Figure 7-44 Change in % user connectivity over simulation time

The impact of mobile agents on the MANET performance in terms of connectivity
issignificant. The network with no agents loses full connectivity alittle before t = 40, and
constantly degrades after that while the network with mobile agents is able to regain and
maintain connectivity. Moreover, the minimum and the total bandwidth performance is

significantly improved as seen in Figure 7-45.
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Table 7-2 presents the paired-t test results for NDBGA and PSO performance on

dynamic scenarios.

ol Ll Zyl_i.LI

165

www.manharaa.com



Table 7-2 Paired-t tests for NDBGA and PSO on dynamic scenarios

Problem Mean Performance Paired-t Test
Size NDBGA PSO p-value
Avg. % User Connectivity 94.558 95.318 0.082
Avg. Min. Bandwidth (Mbps) 32.042 31.517 0.002
Small
Avg. Total Bandwidth (Mbps) 210.563 208.239 0.000
Solution Time (sec) 98.428 84.049 0.000
Avg. % User Connectivity 86.586 85.561 0.013
Avg. Min. Bandwidth (Mbps) 22.316 21.279 0.004
Medium
Avg. Total Bandwidth (Mbps) 810.583 786.524 0.001
Solution Time (sec) 832.144 944.363 0.000
Avg. % User Connectivity 95.608 95.239 0.332
Avg. Min. Bandwidth (Mbps) 22.147 24.323 0.040
Large
Avg. Total Bandwidth (Mbps) 4806.391 4835.774 0.169
Solution Time (sec) 11492.028 16116.164 0.000

Table 7-2 suggests that the performances of NDBGA and the PSO for mobile agent
location optimization are significantly different at the a=0.05 level of significance for
dynamic problems for almost all performance criteria. Although generaly comparable
results are achieved in terms of network performance, the PSO suffers from long solution

times as the problem size increases.
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7.5 Cost-benefit Analyses

When using mobile agentsin real life, each agent will have an associated fixed cost
and operating costs. In order to plan the required number of agents -or resources- prior to
an operation, the proposed model can be used as a simulation tool to see the estimated
network performance with different numbers of agents incorporated into the network.

The following example is a demonstration of such a simulation. A 20 user problem
is simulated with the number of mobile agents ranging from O to 10. The number of
agents versus the average network performance over 100 time steps is provided in the

figures, followed by discussion.
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Figure 7-46 Number of mobile agents versus average % user connectivity
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In Figure 7-46, the change in average % user connectivity with increasing agent
number is presented. Although full connectivity is achieved with only 3 agents, it is aso
true that full connection was lost with 5 agents. This is because the agents blend in and
evolve with the network. The evolution with 3 agents can be different than with 5 agents
because the best agent locations at each time step will change for each agent with
changing number of agents. The graph suggests that number of agents should be on the
greater side, preferably at least 6 in this case. As a general methodology, this also
suggests that test ssmulations should be done with more agents than what is thought
necessary to see whether a steady connectivity and performance is achieved, or not.

The following graphs present the time varying performances with O, 3, 6 and 10

agents. In Figure 7-49, cases with 3, 6 and 10 agents are 100% connected all the time.
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Figure 7-49 Number of agents versus the changein % user connectivity over simulation
time
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In Figure 7-50, the effects on the minimum and the total bandwidth is seen.
Although full connectivity is achieved, for the case with 3 agents, the bandwidth
properties are much better with 6 or 10 agents. A greater benefit is experienced when the
agent number is increased from 3 to 6 than 6 to 10. The scenario with 10 agents can
maintain maximum possible network performance until t=70 and performs better than
others towards the end of the simulation (t>70) when the network is the least dense,

which is expected.
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CHAPTER 8

CONCLUSIONS

In this research, a new model is proposed to conceptualize an autonomous topol ogy
optimization for mobile ad hoc networks. Mobile ad hoc networks are advantageous in
many aspects. They do not require a costly infrastructure, and they are flexible and
immediately available to serve the tasks and needs of the users. However, there are
topological challenges that affect connectivity and performance due to their mobile
nature. The proposed approach relocates a number of mobile agents within their mobility
capabilities to help maintain a suitable level of communication service in the network.

The representation of the wireless ad hoc network communications as network
flows and optimization using a maximum flow model is a novel approach. It is very
responsive to small changes in topology when evaluating network connectivity and
performance. Also, it can be used with any signal attenuation model when calculating the
data flow rates.

The dynamic nature of the problem is a chalenge, but it also enables the optimizer
to gain additional information by leveraging the dynamism. The optimization at a new
time step can benefit from the knowledge of the best solution from the previous time step.
This results from the fact that motion has a time and space continuity and for small

increments in time, the velocity of objects are usually correlated with predecessor and
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successor velocities. Another benefit based on the dynamism is the ability to predict
future user locations. By making use of the position data from a few time steps back, the
optimizer can predict where the user nodes will be positioned over a specified prediction
horizon and thus position the agents for better performance. The inclusion of this
additional information is agorithm independent. The genetic agorithm, the particle
swarm algorithm or any other algorithm that is programmed to solve the proposed model
can benefit from the additional information.

The non-deterministic decoding for binary coded genetic a gorithms was devel oped
during this research but is applicable to a wide range of continuous optimization
problems. It outperformed previous approaches to the resolution deficiency that is
experienced when solving problems in continuous domain with binary encoded genetic
algorithms. The non-deterministic decoding method enables the genetic algorithm to
effectively work its crossover and mutation mechanisms without the need to increase the
chromosome length for precision only.

The approximate MIP model proposed in this research is also new. It optimizes the
locations of agent nodes in a network with an objective to maximize a function of the al-
pair maximum flow and total maximum flows between node pairs. The movements of
agent nodes affect the link capacities, which isincorporated into the model, as well as the
agent travel distance constraints. The nonlinear link distance versus capacity relationship
and the Euclidean link distance and agent travel distances are modeled using piecewise
linear approximations. The model, while being not as effective as the heuristic optimizers

tested, shows how complex the problems are, even very small sizes.
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The heuristic algorithms have outperformed the MIP model, especially with respect
to the solution time. They outperformed the MIP model with respect to the performance
criteriamost of the time because the heuristics allow greater flexibility when defining the
objective function when the network is not fully connected. Among the heuristics, both
the genetic algorithm and the particle swarm optimizations performances were close in
terms of solution quality, but the genetic algorithm in genera, performed better in terms
of the solution time.

The proposed approach, while developed for dynamic topology optimization, easily
adapts to a static scenario by increasing the agent velocity constraints. The static scenario
is useful when users want to improve an existing system of sensors or communication
hubs aready positioned in the field, or when designing a new static system.

The approach could aso be used for “what if” purposes before launching an actual
network in the field. The simulation is useful to plan for the most efficient number of
mobile agents to serve under a certain scenario, and to consider cost / benefit trade offs.

For future research, a combination of the static model and the dynamic model might
be adapted into a system which will deploy mobile agents into an aready operating
MANET. Another future topic is a slight modification to the objective function. In this
study, al users are considered to be of equal importance. This could be readily changed,
and weighted user importance objectives could be investigated. Different user mobility
models could be used with the proposed approach. Finally, the model could be extended

to three dimensions for agent and user motion and communication.
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APPENDIX

Ap- 1 NDBGA Performance compared with conventionally decoded binary GA (CDGA)
on the continuous test problems

Comparison of NDBGA With a Conventionally Decoded GA (CDGA)

NDBGA CDGA
Standard Standard
o PRI e o (o PR el sl
est best eval. Eval. best best
F1 <1x10% <1x10% <1x10%® 5,538 938 1.21x10° 121x10°  4.45x10%
F2 5.08x10™  1.75x10%  356x10™ 23,615 16,940 1.57x10° 157x10°  2.22x10%
F3 -30.0 -30.0 0.0 15,627 25,839 -30.0 -30.0 <1x10%
F4 2.09x10*  273x10"  5.91x10? 169,918 99,905 9.29x10° 2.60x10"  1.10x10*
F4° 488x10%  2.00x10%®  1.38x10% 59,003 2,253 2.95x107 2.95x107  5.43x10%
F5 0.99800384 0.99800384  1.33x10™ 2,817 8,342 0.9980116 09980116  2.28x10°
F6 555x10"  555x10Y 0.0 1,649 339 1.21x10° 1.21x10° <1x10%
F7 -16.0917200 -16.0917200  1.34x10™° 3,076 1,716  -16.0832124  -16.0832124  7.29x10°%
F8 0.3978874  0.3978874  1.30x10° 11,185 10,328 0.3989716 03989716  1.14x10™%°
F9 -1.0316285 -1.0316285  2.43x10™° 3,953 6,587 -1.0311667 -1.0311667 <1x10%
F10 3.0000000 3.0000000 1.85x10% 2,900 4,621 3.0154081 3.0154081 <1x10%
F11  -186.7309088 -186.7309088  2.97x10° 17,156 9,094 -1855815858 -185.5815858  2.92x10°
F12 1.90x10° 291x10%  2.31x10°® 219,856 95,307 7.18x107? 8.60x102 2.13x1072
F13 5.08x10™°  7.61x10%  1.14x10™ 12,475 1,056 <1x10% <1x10% <1x10%
F14 9.46x10™ 153x10°  3.23x10™ 84,377 90,557 7.20x10° 1.51x10? 3.51x107
F15 <1x10%® <1x10%® <1x10%® 8,243 7,569 4.77x10° 477x10%  8.90x10™
F16 <1x10% <1x10% <1x10%® 43,690 19,968 3.99x10* 3.99x10"  1.14x10™%
F17 8.45x10™° 155x10%  1.06x10% 125,786 40,860 15974995 15974995  6.83x107°
F18 6.13x10™°  9.47x10%  211x10™ 131,009 1,791 1.21x10% 1.21x10 <1x10%
F19 512x10%°  258x10°  2.41x10* 313,455 44,343 6.61x10" 6.87x10"  8.13x10?
F20 <1x10% <1x10% <1x10%® 30,152 15,898 2.68x10™ 2.68x10"  5.70x10Y
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Ap- 2 Test problem generation code for Matlab

This function accepts rand_seed, NoOfUsers, NoOfAgents, and NumberOf TimeSlots as
input parameters. NumberOfTimeSlots is set to 1 for static problems. The NodeXY cell
stores an array of X and Y coordinates of the users for each time step t as
NodeXY{t} (UserlD,1) for the x-coordinate and NodeXY{t}(UserlD,2) for the y-

coordinate of user UserID T [1,2,3,...,NoOfUsers]

rand(' state',rand_seed); % Always the sane results default

NoOf Users = NoOf UsersLcl; %rhe number of users getting service
NoOf Agents = NoOX Agent sLcl; %he number of renote controlled agents

NodeSi ze = NoOF Users + NoCOf Agents; % ot al nunber of nobving nodes
M nX = 0;
MaxX = 5;
M nY = O;
MaxY = 5;

i f (Nunber OF Ti neSl ots == 1)
Start XY_User = unifrnd(0, MaxX, NoOf Users, 2); % andom y create
starting XY coordi nates default
el se
i f (NoOF Agents <= 5)
Start XY_User = unifrnd(0, MaxX/ 3, NoOf User s, 2); % andom y
create starting XY coordi nates default
el se
Start XY_User = unifrnd(0, MaxX 2, NoOf Users, 2) ; % andom y
create starting XY coordinates default
end
end

Dest XY_User = uni frnd(0, MaxX- 1, NoOf Users, 2); % andomy create
destinati on XY coordinates default
Start XY_Agent _tenp = zeros(NoCOf Agents, 2);

Start XY _tenp = [Start XY_User % onbine the start positions
St art XY_Agent _t enp]

NodeXY = cel I (1, Nunber O Ti neSl ot s) ;
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NodeXY{1l} = Start XY _tenp; %assign the current XY coordinates of the
nodes to the initial coordinates

0.02; % ninum |inear speed of nobile nodes default
0.05; %raxi num |inear speed of nobile nodes default

Vi n
Vax

Vel ocity = unifrnd(Vm n, Vmax, NoOf Users, 1); % andom y assign velocities
RangeNodes = ones(NodeSi ze,1) * 1.0; %verbody has the sane range

Del t aXY = Dest XY_User - NodeXY{1}(1: NoOf Users,:); %ind delta X and Y
coordinates fromdestination to the current |ocation

U(:,1) = DeltaXY(:,1)./((DeltaxXy(:,1).72 + DeltaXY(:,2).72).70.5);
omormal i ze the deltas cal cul ated above

W(:,2) = DeltaXY(:,2)./((DeltaxXy(:,1).”2 + DeltaXY(:,2).72).70.5);

% ormal i ze the deltas cal cul at ed above

%tart generate user trajectory
for tine = 1: Nunber O Ti neSl ot s

%get the euclidian distance between current position and the
destination

Del t aXY = Dest XY_User - NodeXY{tine}(1l: NoOf Users,:); %ind delta
X and Y coordinates fromdestination to the current |ocation

Scal eFactors = ( (DeltaXy(:,1).72 + DeltaXY(:,2).72).70.5);
o¢al cul ate the distance fromcurrent |location to the destination

alfa = 0.95; %weight of the current direction

UW(:,1) = alfa*Uv(:,1) + (l-alfa)*DeltaXY(:,1)./Scal eFactors;
% ormal i ze the di stance cal cul ated above

W(:,2) = alfa*Uv(:,2) + (l-alfa)*DeltaXY(:,?2)./Scal eFactors;
% ornmal i ze the di stance cal cul ated above

Dest Reached{tinme} = find(Scal eFactors<Velocity); % ind the nodes
that have made it to the destination

UV( Dest Reached{tinme}, 1) = O; %o nore novenent for the nodes at
their destinations
UV( Dest Reached{tinme}, 2) = O; %o nore novenent for the nodes at

their destinations

for j = 1:NoOf Users % or every node
if (rand<0.1) %hange the path angle with a small probability
teta = unifrnd(-pi/4,pi/4);%andomrotation angle
rot_matrix = [cos(teta) sin(teta)
-sin(teta) cos(teta)] ;%D rotation matrix

RotatedUVj = [UV(j,1) WW(j,2)] * rot_matrix; %otate the
direction unit vectors

UvV(j, 1)

W(j, 2)

Rot at edWVj (1, 1); %assign rotated direction vectors
Rot at edWVj (1, 2); %assign rotated direction vectors

end
end

186

Ol Ll Zyl_i.lbl

www.manharaa.com




Vel ocity = unifrnd(Vm n, Vmax, NoOf Users, 1); % andoml y assign
vel ocities

Agent Vel ocity = ones(NoOf Agents, 1) * 0; %assign agent velocities to
zero

NodeXY{ti me+1}(1: NoOf Users, 1) =
NodeXY{time}(1l: NoOf Users, 1) +Velocity(:,1).*UV(:,1); %al cul ate the next
X coordi nat es

NodeXY{ti me+1} (1: NoOf Users, 2) =
NodeXY{ti me}(1l: NoOf Users, 2) +Vel ocity(:,1).*W(:,2); %al cul ate the next
Y coordi nat es

end%generate user trajectory
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Ap- 3 Test problem data

Static cases

NumberOf TimeSlots = 1

Problem Scale | NoOfUsers

NoOfAgents

rand seed

Small 6

675, 948, 375, 468,
427, 843, 674, 241,
643, 846, 451, 944,
346, 466, 841, 523,
597, 411, 624, 977

Medium 10

10

675, 948, 375, 468,
427, 843, 674, 241,
643, 846, 451, 944,
346, 466, 841, 523,
597, 411, 624, 977

Large 20

20

675, 948, 375, 468,
427, 843, 674, 241,
643, 846

Dynamic cases

NumberOf TimeSlots = 100

Problem Scale | NoOfUsers

NoOfAgents

rand seed

Small 4

675, 948, 375, 468,
427, 843, 674, 241,
643, 846, 451, 944,
346, 466, 841, 523,
597, 411, 624, 977

Medium 8

675, 948, 375, 468,
427, 843, 674, 241,
643, 846

Large 14

10

547, 862, 468, 142,
465
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Ap- 4 AMPL modd file

set NODES; #The set of nodes

par am x{ NOCDES} ; #user node x coordi nates (including
initial agent coordi nates)

par am y{ NODES} ; #user node y coordinates (including
initial agent coordinates)

set ACGENTS; #The set of agent nodes

par am Vmax{ AGENTS} ; #Maxi mum di st ance that agents can travel

in one tinme step

par am r ange; #Wrel ess transm ssion range
par am MaxDat aRat e; #Maxi mum data transm ssion rate
param M =10000;

#Arcs between user nodes
set ARCSa: ={i in NODES diff AGENTS, j in NODES diff ACGENTS: i<> and
( sqrt( (x[i]-x[jI)"2+(y[i]-y[i])"2 ) <= range) };

#Arcs between agents and user nodes, an arc is drawn if the agent can
reach a currently out of range user by travelling

set ARCSb:={i in NODES diff AGENTS, j in AGENTS: i<> and ( sqrt(
(x[i]-x[jI)"2+(y[i]-y[i])"2 ) <= ( range + Vmax[j] ) ) };
set ARCSc:={i in AGENTS, j in NODES diff AGENTS: i<> and ( sqrt(

(x[i]-x[j])"2+(y[i]-y[i])"2) <= ( range + Vmax[i] ) ) };

#Arcs between agent nodes thenselves, an arc is drawn if the agents
currently out of range can reach thenselves by travelling

set ARCSd: ={i in AGENTS, j in AGENTS. i<> and ( sqrt( (x[i]-
x[J1)"2+(y[i]-y[i]1)"2 ) <= ( range + Vmax[i] + Vmex[j] ) ) };

#Unite the arcs sets
set ARCS: =ARCSa uni on ARCSb uni on ARCSc uni on ARCSd;

par am npi ece_di st ; #nunber of points to approximte arc

di st ance

par am npi ece_Vmax; #nunber of points to approximate travel
di st ance

par am npi ece_cap; #nunber of points to approxinmate data
rate

par am Nuntf Users; #nunber of Ad Hoc users

#Arc di stance approxi mation
paramrate x{i in NODES, j in AGENTS, p in 1..npiece _dist : i<> };
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paramlimt_x{i in NODES, j in AGENTS, p in 1..(npiece_dist-1) : i<>j
b

paramrate _y{i in NODES, j in AGENTS, p in 1..npiece dist : i<> };
paramlimt_y{i in NODES, j in AGENTS, p in 1..(npiece_dist-1) : i<>j
}s

#Travel di stance approxi mation
paramrate Vmax_x{i in AGENTS, p in 1..npiece Vmax };

param limt_Vmax_x{i in AGENTS, p in 1..(npiece_Vnmax-1) };
paramrate_Vmax_y{i in AGENTS, p in 1..npiece_Vmax };

param limt_Vmax_y{i in AGENTS, p in 1..(npiece_Vmax-1) };

#Li nk capacity (data rate) approxi mation

paramrate_cap{i in NODES, j in AGENTS, p in 1l..npiece_cap : i<> };
param linmt_cap{i in NODES, j in AGENTS, p in 1..(npiece_cap-1) : i<>j
b

var d{ARCS} >=0; #arc
di st ance

var x| { AGENTS} >=0; #new
| ocation of agents x coordinate

var yl { AGENTS} >=0; #new
| ocation of agents y coordinate

var dx{ARCS} >=0; #arc
di stance in x direction

var dy{ARCS} >=0; #ar c

di stance in y direction
var del ta_x{ AGENTS};
#agent travel in x direction
var delta_y{AGENTS};
#agent travel in y direction
var u{ARCS} >=0, <= MaxDat aRate; #data transm ssion rate
var d2{i in NODES, j in AGENTS : i <> j } >=0; #t he
square of the arc distances
var mnflow >= 0;

#all-pair mn flow val ue

set Virtual Commodity := {S in NODES, T in NODES. S<T};
#virtual conmmodities, each belong to a node pair
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set Virtual Commodity2 := {S in NODES diff AGENTS, T in NODES diff
AGENTS: S<T}; #virtual commodities within users only

var Commodi t yFl ows {ARCS, Vi rtual Commodity} >= 0, <= MaxDat aRat e;
#virtual commodity flow val ues

var MaxFl owComodi t yType {Virtual Commodi ty} <= MaxDat aRat e;
#t he maxi mum possible flow of virtual commodity

maxi m ze Al PairMaxFlow : minflow + ( sum{ (S, T) in Virtual Conmodity?2}
MaxFl onCommodi t yType[ S, T] ) / ( NunOf Users * (NumOf Users - 1) / 2 );

#t he m ni mum of maxi mum possi bl e virtual comodity fl ows
subject to AllPairMn {(S,T) in Virtual Commodity2}: minflow <=
Max Fl owComodi t yType[ S, T] ;

#every virtual commodity flow need to be w thin bounds, and they do not
take up other virtual commodities bandw dth

subject to capacity_all _1 {(i,j) in ARCS, (S, T) in Virtual Cormodity}:
Commodi tyFl ows[i,j,S, T] <= u[i,j];

#i f node not the source or the target of the specific virtual
commodity, flow in equals flow out

subject to flow balancel {i in NODES, (S, T) in Virtual Conmodity: S<>i
and T<>i}: sun{j in NODES: (i,j) in ARCS} ComodityFlows[i,j,S T] -
sum{j in NODES: (j,i) in ARCS} CommodityFlows[j,i,S T] = 0;

#i f node the source of the specific virtual commodity, flow difference
equal s +fl ow

subject to flow balance2 {(S,T) in Virtual Cormodity}: sun{j in NODES:
(S,/j) in ARCS} CommodityFlows[S,j,S, T] - sun{j in NODES: (j,S) in ARCS}
Commodi tyFl ows[j, S, S, T] = MaxFl owComuodi t yType[ S, T];

#if node the target of the specific virtual commodity, flow difference
equal s -fl ow

subject to flow balance3 {(S, T) in Virtual Cormodity}: sun{j in NODES:
(T,j) in ARCS} CommodityFlows[T,j,S, T] - sun{j in NODES: (j,T) in ARCS}
Commodi tyFl ows[j, T, S, T] = -1*MaxFl owConmodi tyType[ S, T] ;

#Arc distance constraints (absolute val ue)

subject to Distance xla {i in NODES, j in AGENTS : (i,j) in ARCS }:
dx[i,j] >= x[i]-xI[j];

subject to Distance x2a {i in NODES, j in AGENTS : (i,j) in ARCS }:
dx[i,j] >= xI[j]-x[i];

subject to Distance yla {i in NODES, j in AGENTS : (i,j) in ARCS }:
dy[i,j] >=y[i]l-yI[jl;
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subject to Distance _y2a {i in NODES, j in AGENTS : (i,j) in ARCS }:
dy[i,j] >= ylI[j]-y[i];

#Arc di stance constraints, approximate the squares of each distance
conponent and add to get arc (i,j) length (squared)
subject to InWrelessRange_1a {i in NODES, j in AGENTS : (i,j) in ARCS
}:

<< {pin 1. .npiece dist-1} limt x[i,j,p];{p in 1..npiece_dist}
rate_x[i,j,p]>> dx[i,j] +<< {p in 1..npiece_dist-1} limt_y[i,j,pl;{p
in 1..npiece_dist} rate_y[i,],p]>>
dy[i,j] <= d2[i,j];
#Set arc capacities with the arc |length squared
subject to Capacity_A {i in NODES, j in AGENTS : (i,j) in ARCS }:
uli,j] <= << {pin 1l..npiece_cap-1} limt_cap[i,j,p];{p in
1..npiece_cap} rate_cap[i,j,p] >> (d2[i,j],range”2);
su_bjfact to Cap_acity_B {j in AGENTS, i in NODES : (j,i) in ARCS }:
ufj,i] <=ufi,jl;
#Travel distance constraints (absol ute val ue)
subject to Travel _x_1 {j in AGENTS}: delta x[j] >= x[j]-xI[j];
subject to Travel _x_2 {j in AGENTS}: delta x[j] >= xI[j]-%X[j];
subject to Travel _y 1 {j in AGENTS}: delta y[j] >=vy[jl-VyI[il;

subject to Travel _y 2 {j in AGENTS}: delta y[j] >=vyl[i]l-VY[il;

#Travel range constraints

subject to InMtionRange_1 {i in AGENTS}:
<< {p in 1..npiece_Vmax-1} linmt_Vmax_x[i,p];{p in 1..npiece_Vmax}
rate_Vmax_x[i,p]>> delta_x[i] +<< {p in 1..npiece_Vmax-1}
limt _Vmax_y[i,p];{p in 1..npiece_ Vmax} rate_ Vmax_y[i, p]>>
delta_y[i] <= Vmax[i]"2;
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Ap- 5 AMPL runfile

i nclude in.inf;
nodel nodel _cap. nod;

#Data file
dat a NodelLocati on.dat #from Matl ab

#Mobi l ity distance approxi mation
for {i in AGENTS} {
for { pin 1..(npiece_Vmax-1)}{
let imt_Vmax_x[i,p]:=p*(Vmax[i]/ (npi ece_Vmax-1));
let imt_Vmax_y[i,p]:=p*(Vmax[i]/ (npi ece_Vmax-1));
}

let rate Vmax_x[i,1]:=limt_Vmax_x[i,1];
let rate_Vmax_y[i,1]:=limt_Vmax_y[i, 1];

for { pin 2..(npiece_Vmax-1)}{
let rate_Vmax_x[i,p]:=(limt_Vmax_x[i,p]~"2-
Fimt_Vmax_x[i,p-1]72)/(limt_Vmax_x[i,p]-limt_Vmax_x[i,p-1]);
let rate Vmax_y[i,p]:=(limt_Vmax_y[i, p]~2-
limt _Vmax_y[i,p-1]72)/(limt_Vmax_y[i,p]-limt_Vmax_y[i,p-1]);
}

| et rate_Vmax_x[i, npi ece_Vmax]: =M
let rate_Vmax_y[i, npi ece_Vmax]: =M

}

#Range di stance approxi mation
for {i in NODES, j in AGENTS : i <>j } {
for { pin 1..(npiece_dist-1)}{
let limt x[i,j,p]:=p*(range/ (npiece _dist-1));
let limt _y[i,j,p]:=p*(range/(npiece _dist-1));
}

let rate x[i,j,1]:=limt _x[i,j,1];
let rate y[i,j,1]:=limt_y[i,j,1];

for { pin 2..(npiece_dist-1)}{
let rate x[i,j,p]l:=(limt _x[i,j,p]*2-1imt_x[i,j,p-
nN22)/(limt_x[i,j,pl-limt _x[i,j, p-1]);
let rate_y[i,j,pl:=(limt_y[i,j,p]"2-1imt_y[i,j,p-
1r2)/(timt _y[i,j,pl-limt_y[i,j, p-1]);
}

let rate x[i,]j,npiece_dist]:=M
let rate y[i,]j,npiece_dist]:=M
}

#Data rate approxi mation
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for { i in NODES, j in AGENTS : i <> } {
for { pin 1..(npiece_cap-1)}{
let limt_cap[i,j,p]l:=( p*(range/ (npiece_cap-1)) )"2;
}

let rate_cap[i,j,1]:= MaxDataRate * ( 1.0/(1 + exp(10*(
limt_cap[i,j,1]70.5/range - 0.5))) - 1.0) / limt_cap[i,j,1];

for { pin 2..(npiece_cap-1)}{
let rate_cap[i,j,p]:= MaxDataRate * ( 1.0/(1 + exp(10*(
limt_cap[i,j,p]”?0.5/range - 0.5))) - 1.0/(1 + exp(l10*(
limt_cap[i,j,p-1]70.5/range - 0.5))) ) / (limt_cap[i,j,p]-
limt_cap[i,j,p-1]);
}

let rate_cap[i,]j, npiece_cap]: =0;

}

#Fix the data rates for users
for { (i,j) in ARCS: i not in AGENTS and j not in AGENTS } {
it (((x[i]-x[j])~2+(y[i]-y[j])"2)"0.5<=range) then{
fix u[i,j] := MaxDataRate * 1.0/ (1l+exp(10*( ((x[i]-
x[j1)"2+(y[i]-y[i])"2)"0.5/range - 0.5)));

}

el se{
fix u[i,j]l:= 0;

option cplex_options 'm pgap=0.10 tinelinit=120";
sol ve;
printf"">agentLocation. out;
for {i in AGENTS}{
printf"9% 9% ;\n",xI[i],yl[i]>>agentLocation. out;
}
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Ap- 6 Example datafile for AMPL model (Stationary scenario)

param: NODES : x y :=
1 1.77560 2.85915
2 0.71296 4.84898
3 4.53495 4.72558
4 1.25040 3.95480
5 1.84809 2. 74672
6 2.93035 1.23632
7 2.37250 2.88927
8 4.39605 2.40152

param range: = 1. 00000;
par am npi ece_di st: = 8;
par am npi ece_Vimax: = 8;
param npi ece_cap: = 8;

par am MaxDat aRat e: = 54;

param NunOf Users: = 5;

param : AGENTS : Vmax : =
6 4.23889
7 2.83694
8 4.42213
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